Документ подписан простой электронной подписью Информация о владельце:

ФИО: Баламирзоев Назим Лиминистерство образования и науки рф

Должность: И.о. ректора

Дата подписания: 20.08 2023 22:11:50 Федеральное государственное бюджетное образовательное Уникальный программн 2a04bb882d7edb7f479cb**уучреждение** высшего профессионального образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра радиотехники и телекоммуникаций

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Цифровая обработка сигналов в радиотехнике» для студентов направления подготовки магистров 11.04.01 «Радиотехника», программа «Системы и устройства передачи, приема и обработки сигналов»

УДК 621.395

Методические указания к выполнению лабораторных работ по дисциплине «Цифровая обработка сигналов в радиотехнике» для студентов направления подготовки магистров 11.04.01 «Радиотехника», программа «Системы и устройства передачи, приема и обработки сигналов». — Махачкала: ИПЦ ДГТУ, 2020. — 36 с.

Данные методические указания являются учебным руководством к выполнению лабораторных работ по дисциплине «Цифровая обработка сигналов в радиотехнике». Лабораторная работа №1 посвящена моделированию ММ сигналов в Matlab. Лабораторная работа №2 изучает дискретизацию гармонических сигналов. Лабораторная работа №3 исследует моделирование фильтров в Matlab. Лабораторная работа №4 исследует моделирование процесса цифровой фильтрации в Matlab. Лабораторная работа №5 исследует моделирование процесса цифровой фильтрации с применением сигнального процессора.

 Составители:
 к.т.н., доцент
 Гаджиев Х.М.

 к.ф.-м.н., доцент
 Гаджиева С.М.

 к.т.н., ст. преп.
 Челушкина Т.А.

Рецензенты: зав. кафедрой ИВТ филиала МГТУ МИРЭА в г. Махачкала, д.т.н., профессор

Гусейнов Р.В.

зав. кафедры БиМАС ФГБОУ ВПО «ДГТУ», д.т.н., профессор

Магомедов Д. А.

(Рег. №____)

Печатается согласно постановлению Ученого совета Дагестанского государственного технического университета от « » ______2020.

Лабораторная работа №1

Исследование математических моделей детерминированных сигналов

Цель работы: Изучить математические модели (ММ) детерминированных аналоговых и дискретных гармонических сигналов (осциллограммы и спектры). Изучить дискретное преобразование Фурье (ДПФ), методику восстановления исходного гармонического сигнала по ДПФ.

Выполнение лабораторной работы состоит из двух этапов:

- теоретическое исследование ММ сигналов,
- моделирование MM сигналов в Matlab.

Теоретическая часть

1. Работа в Matlab

Создание файла в Matlab. Открыть новый М-файл на панели инструментов для создания программы (**File\New\M-file**), набрать необходимые команды МАТЛАБ для выполнения работы. Сохранить файл в рабочем каталоге с расширением work\ имя.т.

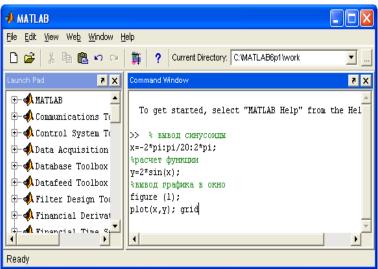


Рис. 1. Рабочее окно МАТLAВ

Отвадка программы и ее выполнение. Запустить программу путем ее ввода в командном окне МАТЛАБ (Скопировать программу и вставить в рабочее окно). При сообщении ошибок выполнить необходимые исправления.

М-файлы сценариев и функций

Программа в MATLAB может записываться в виде m-файла. Для создания m-файлов может использоваться как встроенный редактор, так и любой текстовый редактор, поддерживающий формат ASCII. Подготовленный и записанный на диск m-файл становится частью системы, и его можно вызывать как из командной строки, так и из другого m-файла. Есть два типа m-файлов: файлы-сценарии и файлы-функции. Важно, что в процессе своего создания они проходят синтаксический контроль с помощью встроенного в систему

MATLAB редактора/отладчика m-файлов. Файл-сценарий, именуемый также Script-файлом, является просто записью серии команд без входных и выходных параметров. Он имеет следующую структуру:

Основной комментарий (%), дополнительный комментарий, тело файла с любыми выражениями важны следующие свойства файлов-сценариев:

- они не имеют входных и выходных аргументов;
- работают с данными из рабочей области;
- в процессе выполнения не компилируются;
- представляют собой зафиксированную в виде файла последовательность операций, полностью аналогичную той, что используется в сессии.

Основным комментарием является первая строка текстовых комментариев, а дополнительным — последующие строки. Основной комментарий выводится при выполнении команд lookfor и help имя_каталога. Полный комментарий выводится при выполнении команды help Имя_файла. Рассмотрим пример файла-сценария вывода осциллограммы синусоиды с амплитудой 5В, частотой 5Гп:

Пример 1 компьютерного моделирования осциллограммы аналогового гармонического сигнала

```
      t=0:0.01:1
      % вывод осциллограммы за t=1c,

      x=5*sin(5*2*pi*t)
      % Sin с требуемыми параметрами,

      figure(1)
      % вывод осциллограммы на рис.1,

      ylabel('Magnitude'),grid on %подпись оси у (ампл. напряжения)

      xlabel('Time[C]')
      %подписываем ось х

      Результат выполнения данного m-файла представлен на рис. 2.
```

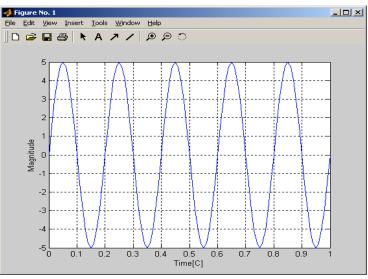


Рис. 2. Окно отображения графика функции.

Имена файлов-сценариев нельзя использовать в качестве параметров функций, поскольку файлы-сценарии не возвращают значений. Можно сказать, что файл-сценарий — это простейшая программа на языке программирования MATLAB.

Загрузка системы МАТЛАБ. Найти на рабочем столе компьютера иконку системы МАТЛАБ и произвести запуск. При отсутствии иконки выполнить запуск через последовательность операций ПУСК-ПРОГРАММЫ - МАТЛАБ. При исследовании осциллограммы дискретных сигналов в МАТЛАБ используются специальная функция - вывод изображения дискретного сигнала stem(k, sd).

1. Осциплограммы дискретных сигналов, заданных отсчетами

Пример 2 компьютерного моделирования дискретизированных сигналов $sd=(1\ 1\ 1\ 0\ 0\ 0)$.

```
Пример М-файла:
```

k = 0.5; % номера отсчетов дискретного сигнала

 $sd = [1 \ 1 \ 1 \ 0 \ 0 \ 0];$ % дискретный сигнал

figure(1);

stem(k, sd); % график дискретного сигнала

grid on;

ylabel('magnitude');

xlabel('t diskret');

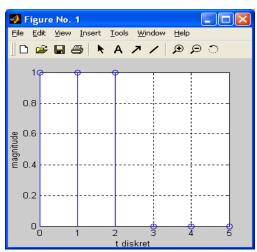


Рис. 3. Пример осциллограммы в Matlab

2. Функции преобразований дискретных сигналов

Наиболее известным из преобразований дискретных сигналов является дискретное преобразование Фурье (ДПФ). Соответствующая функция, использующая алгоритм быстрого преобразования Фурье (БПФ), в MATLAB относится к категории функций обработки данных и является встроенной (функции **fft** и **ifft** — одномерный вариант, **fft2** и **ifft2** — двумерный вариант).

<u>Отличительной особенностью пакета является то, что коэффициенты</u> <u>ДПФ **Сп** определяются без нормирования на число дискретных отсчетов сигнала.</u>

М-файл для сигнала из примера 2:

k = 0:5; %число отсчетов сигнала

 $sd = [1 \ 1 \ 1 \ 0 \ 0 \ 0];$ % исходный дискретный сигнал

% распределение Сп на относительной оси f для 6 отсчетов сигнала:

f = ((0:(5))/(5));

Y = fft(sd,6);% Не нормированное ДПФ исходного сигнала по 6

заданным отсчетам

% модуль не нормированного ДПФ m=abs(Y);

figure(1);

stem(f, m); % график не нормированного ДПФ

grid on; % сетка на графике

ylabel('Cn DPF'); % подпись оси ординат - модуль Cn ДП Φ

% подпись оси абсцисс - относительная ось f:

xlabel('Diskret Frequency');

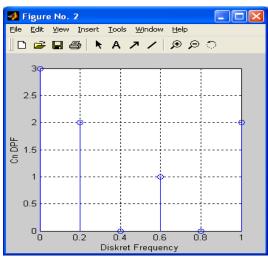


Рис. 4. Не нормированное ДПФ дискретного сигнала в Matlab

М-файл для сигнала из примера 1:

% время наблюдения сигнала t=0:0.01:1

% количество отсчетов сигнала n=256

x=5*sin(5*2*pi*t)% исследуемый сигнал

% дискретное преобразование Фурье y = fft(x,n)

% модуль ДПФ m=abs(y)/n

f=((0:(n-1))*100/(n-1)) % дискретная частота

figure(1)

plot(f,m) % график спектра

ylabel('Magnitude'),grid on % модуль амплитуды

xlabel('Frequency [hertz]') % частота в Гц

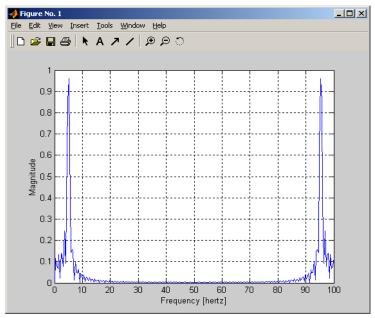


Рис. 5. ДПФ гармонического сигнала в Matlab

3. Генерация последовательности импульсов

Функция **pulstran** служит для генерации конечной последовательности импульсов одинаковой формы с произвольно задаваемыми задержками и амплитудными множителями. Форма импульсов может задаваться одним из двух способов: именем функции, генерирующей импульс, либо уже рассчитанным вектором отсчетов.

В качестве примера рассмотрим применение функций **pulstran** для восстановления аналогового сигнала по его дискретным отсчетам согласно теореме Котельникова.

Осциллограмма исходного дискретного сигнала \mathbf{sd} и восстановленного аналогового сигнала \mathbf{sa} .

Пример М-файла:

t = -10:0.1:15;

k = 0.5; % номера отсчетов дискретного сигнала

 $sd = [1 \ 1 \ 1 \ 0 \ 0 \ 0];$ % дискретный сигнал

sa = pulstran(t, [k' sd'], 'sinc'); % восстановлен. аналоговый сигнал

stem(k, sd) % график дискретного сигнала

hold on % вывод sd и sa на одном рисунке

 $\mathsf{plot}(\mathsf{t}, \mathsf{sa}, \mathsf{'r'})$ % график аналогового сигнала

hold off % вывод sd и sa на одном рисунке

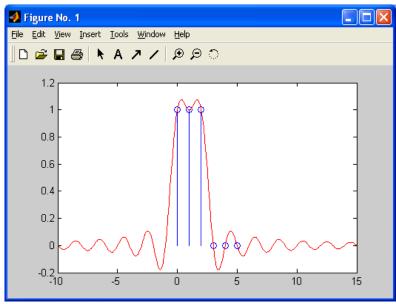


Рис. 6. Осциллограммы дискретного и восстановленного сигналов в Matlab

Практическая часть

Задание 1. Теоретическое исследование ММ гармонического аналогового и дискретизированного сигналов.

- 1.1. Провести теоретический расчет MM гармонического сигнала $S(t)=N*Sin(N*\omega*t)$ в соответствии с Вашим вариантом, где N номер варианта, $\omega=2\Box f=2\Box 10^2$ (зарисовать в масштабе осциллограмму и спектр аналогового гармонического сигнала).
- 1.2. В соответствии с теоремой Котельникова провести дискретизацию заданного сигнала, зарисовать осциллограмму, рассчитать и построить спектр дискретизированного сигнала по формуле (9) в [1].
- 1.3. По полученному дискретному спектру сигнала восстановить исходный аналоговый гармонический сигнал (10) в [1] (зарисовать осциллограмму восстановленного гармонического сигнала). Сделать выводы.
- 1.4. Увеличить количество отсчетов (выборок) сигнала за период до 4, выполнить исследования в соответствии с пунктами 1.2, 1.3. Провести анализ результатов, сделать выводы.

<u>Задание 2.</u> Компьютерное моделирование ММ гармонического аналогового и дискретизированного сигналов в программном пакете Matlab.

- 2.1. Провести исследование гармонического сигнала (смоделировать осциллограмму сигнала из п. №1).
- 2.2. В соответствии с теоремой Котельникова дискретизировать гармонический сигнал, задав осциллограмму сигнала двумя равноотстоящими отсчетами за период.
- 2.3. Провести моделирование спектра дискретизированного гармонического сигнала.
- 2.4. Восстановить исходный гармонический сигнал (привести осциллограмму).

2.5. Увеличить количество отсчетов за период сигнала (с 2 до 4), для полученного сигнала выполнить пункты 2.3, 2.4. Провести анализ двух исследованных дискретных сигналов, указать влияние количества отсчетов дискретного сигнала на точность восстановленного. Сделать выводы.

Задание 3. Исследование процесса дискретизации гармонических сигналов.

- 3.1. Изменить частоту гармонического сигнала (увеличить, уменьшить в кратное число раз), провести моделирование в соответствии с заданием №2.
- 3.2. Изменить амплитуду гармонического сигнала (увеличить, уменьшить в несколько раз), провести моделирование в соответствии с заданием №2.
- 3.3. Провести анализ результатов моделирования, письменно сделать выводы.

<u>Задание 4.</u> Анализ теоретического исследования и компьютерного моделирования сигналов.

4.1. Провести анализ полученных результатов теоретического исследования и компьютерного моделирования ММ дискретизированного гармонического сигнала. Письменно сделать выводы.

Контрольные вопросы

- 1. Требования теоремы Котельникова при дискретизации сигналов.
- 2. Явление Элайсинга.
- 3. Дискретное преобразование Фурье.
- 4. Обратное дискретное преобразование Фурье.
- 5. Методика восстановления исходного гармонического сигнала.

Отчет по проделанной работе предоставляется на проверку преподавателю в письменном виде. Отчет должен содержать:

- 1. Название работы.
- 2. Цель работы.
- 3. Теоретический расчет и результаты по первому заданию (осциллограммы и спектры).
- 4. Результаты моделирования (осциллограммы и спектры зарисовать или распечатать).
 - 5. Сравнительный анализ результатов.
 - 6. Выводы по работе.

Лабораторная работа №2

Дискретизация гармонических сигналов на аппаратном комплексе TMS320C5510 DSK

Цель работы: Исследовать дискретизацию и восстановление гармонического сигнала на аппаратном комплексе TMS320C5510 DSK.

Теоретическая часть

1. Разработка и отладка программ с использованием Code Compose Studio (CC Studio)

Программный пакет Code Compose Studio разработан фирмой Texas Instruments Inc. и предназначен для работы с аппаратным комплектом DSK. Вид программного окна приведен на рис.7.

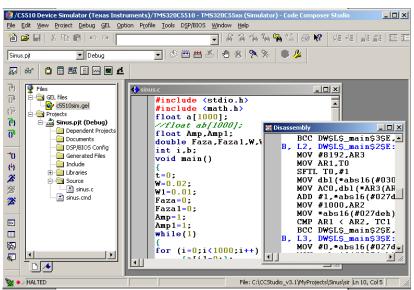


Рис. 7. Рабочее окно Code Compose Studio

Действия по созданию программы для сигнального процессора подразделяются на несколько этапов: создание проекта; создание программного модуля и включение его в проект; компиляция и компоновка загрузочного файла программы; загрузка программы в сигнальный процессор и отладка в интерактивном режиме с использованием различных методов. Этапы создания и отладки программы приведены ниже. Описание команд меню Code Compose Studio и подробный алгоритм разработки программы даны в приложении [4].

2. Настройка и отладка программ на аппаратном комплексе TMS320C5510 DSK

2.1. Подключение аппаратного комплекса TMS320C5510 DSK

Для отладки программы на аппаратном комплексе TMS320C5510 DSK необходимо при включении **CC Studio** выбрать в каталоге **DSP_C55xx**, в этом случае проинициализируется аппаратный комплекс (при включенных динамиках слышен звук – один тон).

Открыть свой созданный в **CC Studio** проект, для подключения к ПК платы **TMS320C5510 DSK** в меню **Debug** выбрать **Connect** в левом нижнем углу экрана появится знак (при включенных динамиках слышен звук − один тон).

2.2. Исследование дискретизации сигналов

Исходные заготовки проекта находятся в папке MyProjects.

Шаг 1. Скопировать заготовку проекта в свою папку и переименовать проект (первые буквы Вашей фамилии на английском языке).

В проекте открыть программу с расширением «.c».

Шаг 2. Подключить генератор тона запуском программы **NCH Tone Generator** (рис. 8), установить в соответствии с Вашим вариантом частоту гармонического сигнала и запустить генератор, нажав кнопку

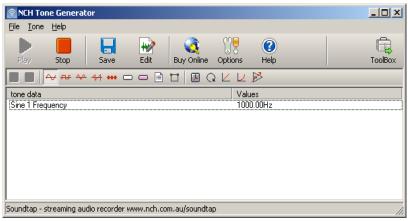


Рис. 8. Рабочее окно генератора тона

Шаг 3. Подключить осциллограф Velleman PCS-500, запуском программы PC-Lab2000. Осциллограф позволяет исследовать осциллограммы (Oscilloscope) и спектры (Spectrum Analyzer) сигналов, поступивших с двух каналов CH1, CH2.

- **Шаг 4.** Исследование дискретизации сигналов проводится в программе (расширение .c). В структуре программы можно выделить несколько блоков:
 - 1. подключение библиотек,
 - 2. формирование массива заданной длины (300 точек),
 - 3. установка параметров кодека,
 - 4. объявление переменных для генерации гармонического сигнала,
 - 5. выделение одного колебания,
 - 6. поиск минимума и максимума гармоники на одном периоде,
 - 7. установка требуемых библиотек,
 - 8. запуск кодека,
 - 9. считывание сигнала с генератора тона и передача его на выход,
 - 9а. выдача сигнала в левый канал кодека,
 - 9б. выдача сигнала в правый канал кодека,
 - 10. выделение одного колебания и поиск минимума и максимума,
 - 11.формирование на основе двух считанных значений выходного сигнала и выдача его на динамики,

12. восстановление аналогового сигнала по ДПФ и выдача его на динамики, 13. выключение кодека.

Пример программы дискретизации гармонического сигнала

```
/*1.Подключение библиотек*/
#include "teziscfg.h"
#include "dsk5510.h"
#include "dsk5510 aic23.h"
#include <stdio.h>
#include <math.h>
/*2. Длина массива гармонического сигнала */
#define SINE TABLE SIZE 300
//#define Dlit 15
/*3. Установка параметров кодека */
DSK5510_AIC23_Config config = {
0x0017. // 0 DSK5510 AIC23 LEFTINVOL Left line input channel volume
0x0017, // 1 DSK5510_AIC23_RIGHTINVOL Right line input channel volume
0x00d8, // 2 DSK5510_AIC23_LEFTHPVOL Left channel headphone volume
0x00d8, // 3 DSK5510_AIC23_RIGHTHPVOL Right channel headphone volume
0x0011, // 4 DSK5510_AIC23_ANAPATH Analog audio path control
0x0000, // 5 DSK5510_AIC23_DIGPATH Digital audio path control
0x0000, // 6 DSK5510_AIC23_POWERDOWN Power down control
0x0043, // 7 DSK5510 AIC23 DIGIF
                                    Digital audio interface format
0x0081, // 8 DSK5510_AIC23_SAMPLERATE Sample rate control
0x0001 // 9 DSK5510 AIC23 DIGACT
                                      Digital interface activation
};
/*4. Описание переменных и массивов программы*/
Int16 sinetable[SINE_TABLE_SIZE], sinevosst[SINE_TABLE_SIZE];
int sinetableZN[SINE TABLE SIZE];
Int16 WriteSignal[SINE_TABLE_SIZE];
float Amp, Amp1;
double W,W1;
int i, TABLE SIZE:
int Max, NumMax, Min, NumMin, NumMinusPlus 1, NumMinusPlus 2;
int C1.C2:
void MaxMin()
{ //5. Выделение одного колебания
 for (i=0;i<299;i++)
   {if ((sinetableZN[i]<0)&&(sinetableZN[i+1]>=0))
     {NumMinusPlus 1=i;
     break;};
 for (i=NumMinusPlus_1+1;i<299;i++)
   \{if((sinetableZN[i]<0)\&\&(sinetableZN[i+1]>=0)\}
     {NumMinusPlus_2=i;
     break;};
```

```
// 6. Поиск минимума и максимума гармоники на 1 периоде
 Max=0:
 NumMax=NumMinusPlus_1;
 Min=32000:
 NumMin=NumMinusPlus_1;
 for (i=NumMinusPlus 1;i<NumMinusPlus 2;i++)
   {if (sinetableZN[i]<Min)
      {Min=sinetableZN[i];
      NumMin=i;
      };
   if (sinetableZN[i]>Max)
      {Max=sinetableZN[i];
      NumMax=i;
      };
   };
}
void main()
DSK5510 AIC23 CodecHandle hCodec;
Int16 msec; //, Int=1000;
Int16 ReadData; //, sample;
int Dlit,t;
Amp=0x7fff;
/*7. Инициализация процессора и компонентов платы DSK5510 */
DSK5510 init();
/*8. Запуск кодека */
hCodec = DSK5510_AIC23_openCodec(0, &config);
for (i=0;i<300;i++)
   {sinetable[i]=0;};
//9. Считыв. сигнала с генер. тона и передача его на выход
for (msec = 0; msec < 2000; msec++)
  for (i = 0; i < 300; i++)
  DSK5510_AIC23_read16(hCodec, &ReadData);
      sinetable[i]=ReadData*10;
      sinetableZN[i]=ReadData;
      /9а* Передача сигнала в левый канал кодека*/
      while (!DSK5510_AIC23_write16(hCodec, sinetable[i]));
      /96* Передача сигнала в правый канал кодека */
      while (!DSK5510_AIC23_write16(hCodec, sinetable[i]));
    };
//10. Выделение одного колебания и поиск мин. и макс.
```

```
MaxMin();
//11. Формир. на основе 2 считанных значений вых. сигнала
Dlit=NumMinusPlus 2-NumMinusPlus 1;
printf("значение Dlit= %f \n",Dlit);
for (i=0;i<Dlit/2;i++)
   {WriteSignal[i]=Max;
   };
for (i=Dlit/2;i<Dlit;i++)
   {WriteSignal[i]=Min;
for (msec = 0; msec < 2000; msec++)
  for (i = 0; i < Dlit; i++)
      /* Передача сигнала в левый канал кодека */
      while (!DSK5510_AIC23_write16(hCodec, WriteSignal[i]));
      /* Передача сигнала в правый канал кодека */
      while (!DSK5510 AIC23 write16(hCodec, WriteSignal[i]));
    };
  };
//12. Восстановление аналогового сигнала по ДПФ
t=0:
C1 = (Max + Min)/2;
C2=(Max-Min)/2;
W=Dlit;
W=6.28/W:
for (i=0;i<Dlit;i++)
   sinevosst[i] = \frac{C1+2*C2*cos(W*t)}{c}
   t++;
   };
for (msec = 0; msec < 2000; msec++)
  for (i = 0; i < Dlit; i++)
      /* Передача сигнала в левый канал кодека */
      while (!DSK5510 AIC23 write16(hCodec, sinevosst[i]));
      /* Передача сигнала в правый канал кодека */
      while (!DSK5510 AIC23 write16(hCodec, sinevosst[i]));
    };
  };
  /*13. Остановить кодек */
DSK5510_AIC23_closeCodec(hCodec);
```

Шаг 5. Провести компиляцию и запуск программы. Открыть рабочее окно осциллографа и последовательно получить осциллограммы и спектры аналогового гармонического, дискретизированного, восстановленного сигналов. Примеры осциллограмм и спектров исследуемых сигналов приведены (в соответствии с порядком исследования) на рис. 9-12.

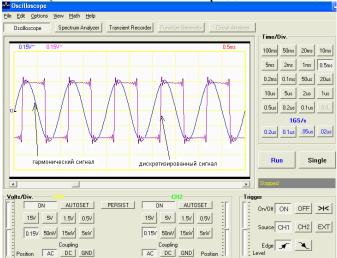


Рис. 9. Осциллограмма аналогового гармонического

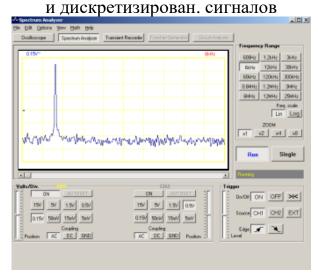


Рис. 10. Спектр аналогового гармонического сигнала

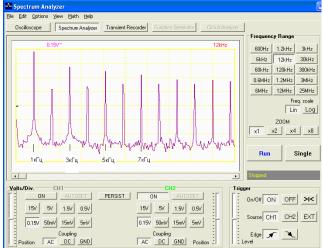


Рис. 11. Спектр дискретизированного сигнала

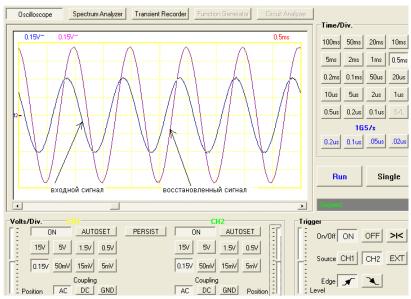


Рис. 12. Осциллограмма аналогового гармонического и восстановлен. сигналов

Практическая часть

<u>Задание 1.</u> Создать свой проект, позволяющий дискретизировать аналоговый гармонический сигнал и проводить его восстановление.

Для гармонического сигнала из лабораторной работы №1 ($S(t)=N*Sin(N*\omega*t)$, $\omega=2\Box f=2\Box 10^2$) определить коэффициенты C_n ДПФ, аналитическое выражение восстановленного сигнала. Полученные выражения подставить в пункт № 12 программы дискретизации гармонического сигнала C1, C2, sinevosst[i].

<u>Задание 2.</u> В соответствии с пунктом №2 теоретической части провести исследование:

- входного аналогового гармонического сигнала,
- дискретизированного гармонического сигнала,
- восстановленного гармонического сигнала.

Зарисовать полученные осциллограммы и спектры.

<u>Задание</u> 3. Изменить параметры аналогового гармонического сигнала (амплитуду и частоту). Провести исследование в соответствии с заданием №2. Письменно сделать выводы.

Контрольные вопросы

- 1. Методика дискретизации гармонического сигнала в аппаратном комплексе TMS320C5510 DSK.
 - 2. Восстановление гармонического сигнала по дискретным отсчетам.
- 3. Влияние параметров гармонического сигнала (амплитуды и частоты) на процесс дискретизации и восстановления.

Лабораторная работа №3 Моделирование фильтров в Matlab R2007b

Цель работы: Исследование аналоговых и цифровых фильтров в программном пакете Matlab R2007b.

В соответствии с методикой проектирования аналоговых и цифровых фильтров в Matlab R2007b, изложенной в п. 2.6 [1] провести моделирование аналоговых и цифровых фильтров.

Задание 1. Моделирование аналоговых фильтров.

- 1.1. Провести компьютерное моделирование AЧX аналоговых фильтров ФНЧ (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию сигнала с параметрами из лабораторной работы №1 (в соответствии с Вашим вариантом). В отчете по лабораторной работе представить М файл с программой моделирования фильтров. В масштабе зарисовать АЧХ. Провести сравнительный анализ полученных характеристик. Указать влияние коэффициентов затухания на форму АЧХ. Письменно сделать выводы.
- 1.2. По аналогичной методике провести компьютерное моделирование АЧХ аналоговых фильтров ФВЧ (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию заданного в 1.1. сигнала.
- 1.3. По аналогичной методике провести компьютерное моделирование АЧХ аналоговых полосовых фильтров (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию заданного в 1.1. сигнала.
- 1.4. По аналогичной методике провести компьютерное моделирование АЧХ аналоговых режекторных фильтров (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих подавление заданного в 1.1. сигнала.

Задание 2. Моделирование цифровых фильтров.

- 2.1. Провести компьютерное моделирование АЧХ цифровых фильтров ФНЧ (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию сигнала с параметрами из лабораторной работы №1 (в соответствии с Вашим вариантом). Параметры при проектировании цифрового фильтра брать аналогичными параметрам аналогового прототипа. В отчете по лабораторной работе представить М файл с программой моделирования фильтров. В масштабе зарисовать АЧХ. Провести сравнительный анализ полученных характеристик для аналоговых и цифровых фильтров. Указать влияние коэффициентов затухания на форму АЧХ. Письменно сделать выводы.
- 2.2. По аналогичной методике провести компьютерное моделирование АЧХ цифровых фильтров ФВЧ (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию заданного в 1.1. сигнала.
- 2.3. По аналогичной методике провести компьютерное моделирование АЧХ аналоговых полосовых фильтров (Баттерворта, Чебышева 1,2 типа, Золотарева Кауэра), обеспечивающих фильтрацию заданного в 1.1. сигнала.

2.4. По аналогичной методике провести компьютерное моделирование АЧХ аналоговых режекторных фильтров (Баттерворта, Чебышева 1,2 типа, Золотарева - Кауэра), обеспечивающих подавление заданного в 1.1. сигнала.

Контрольные вопросы

- 1. Приведите идеализированные АЧХ фильтров: ФНЧ, ФВЧ, полосового, режекторного.
- 2. Приведите АЧХ фильтров Баттерворта (ФНЧ, ФВЧ, полосового, режекторного).
- 3. Приведите АЧХ фильтров Чебышева 1,2 типа (ФНЧ, ФВЧ, полосового, режекторного).
- 4. Приведите АЧХ эллиптических фильтров (ФНЧ, ФВЧ, полосового, режекторного).

Лабораторная работа №4 Моделирование процесса цифровой фильтрации в Matlab R2007b

Цель работы: Визуальное проектирование процесса цифровой фильтрации радиотехнических сигналов с использованием программного пакета **GUI SPTool** (Graphic User Interface Signal Processing Toolbox).

Теоретическая часть

Процедура фильтрации сигнала включает в себя следующие операции:

- импортирование входного сигнала и анализ его спектра,
- синтез ЦФ и анализ его характеристик,
- моделирование процесса фильтрации,
- анализ выходного сигнала и его спектра,
- экспортирование результатов моделирования в MATLAB.

Обращение к GUI – программе осуществляется после записи ее имени в командном окне MATLAB: **sptool**.

1. Создание входного сигнала

После обращения к программе SPTool в командном окне MATLAB открывается первое окно SPTool: startup.spl, состоящее из трех полей: Signals, Filters, Spectra.

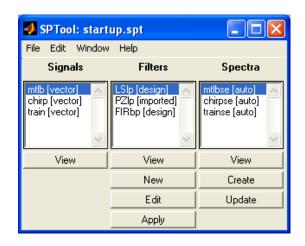


Рис. 13. Окно GUI – программы SPTool (startup.spl)

Источником сигнала для **SPTool** может быть либо рабочее пространство **Workspace**, если сигнал создается непосредственно в командном окне **MATLAB**, либо диск (**Disk**), если сигнал создается как \mathbf{m} – файл.

Пример создания дискретного входного сигнала, состоящего из двух синусоид с частотами 500 Γ ц, 750 Γ ц и смеси шума:

```
Fd=2000;

f1=500;

f2=750;

w1=2*pi*f1/Fd;

w2=2*pi*f2/Fd;

n=1:1000;

x=1*sin(w1*n)+1.5*sin(w2*n);

y=rand(1,length(x));

sum=x+y;
```

Импортирование входного сигнала в SPTool

Для импортирования входного сигнала нужно в первом окне **GUI** – **программы SPTool** (Рис. 13) войти в меню **File** – **Import**. После этого открывается окно **Import to SPTool** (Рис. 14), в котором следует в поле **Source** отметить точкой, откуда импортируется сигнал – **From Workspace** или **From Disk**.

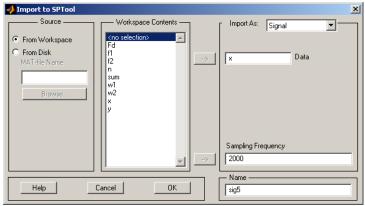


Рис. 14. Окно GUI – программы SPTool (Import to

SPTool)

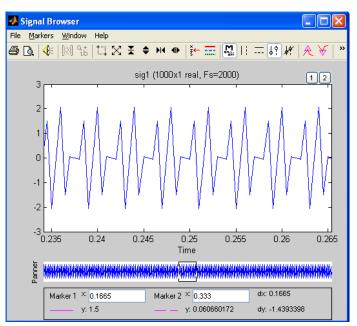
ля импортирования сигнала из **From Workspace** необходимо выполнить следующие действия:

- в поле Workspace Contents выделить имя сигнала;
- выделить имя импортируемого сигнала и нажать кнопку со стрелкой (\square), что является указанием рассматривать сигнал с выделенным именем как данные (**Data**);
- ввести в следующие поля: **Import As Signal**; **Sampling Frequency** частоту дискретизации \mathbf{f}_{π} (в примере Fd=2000 Гц); **Name** имя сигнала в **SPTool** (например sig3);
 - нажать кнопку ОК.

Для импортирования сигнала из **From Disk** необходимо выполнить следующие действия:

– в поле **Source** нажать активированную кнопку **Browse**, в результате откроется окно **Select File to Open** (Puc. 15);

Рис. 15. Окно GUI – программы SPTool (Select File to Open)


- в открывшемся окне отметить курсором имя \mathbf{m} файла и нажать кнопку **Открыть**, после чего автоматически открывается рабочее окно **Import to SPTool** (Рис. 14), в котором следует в поле **Contents** выделить имя сигнала (имя переменной, соответствующее сигналу в \mathbf{m} -файле), нажать кнопку со стрелкой (\square), что является указанием рассматривать сигнал как данные (**Data**);
- ввести в следующие поля: **Import As Signal**; **Sampling Frequency** частоту дискретизации \mathbf{f}_{π} ; **Name** имя сигнала в **SPTool** (например sig3, можно ввести другое имя, не совпадающее с именем файла);
 - нажать кнопку **ОК.**

Визуализация входного и выходного сигналов

Для просмотра сигналов необходимо в рабочем окне GUI — программы **SPTool** (Рис. 13.):

- выделить имя сигнала;
- нажать кнопку View, в результате чего откроется окно **Signal Browser** (Рис. 16), содержащее имя сигнала, частоту дискретизации, график дискретного сигнала, представленный непрерывной кривой на временном интервале $[0,NT]=[0,N/f_{\rm d}]$, где N- количество интервалов дискретизации на временном интервале наблюдения.

При визуализации сигналов имеется возможность масштабирования. На рис. 16 приведена осциллограмма сигнала из примера $x=1*\sin(w1*n)+1.5*\sin(w2*n)$.

Puc. 16. Окно GUI – программы SPTool (Signal Browser)

2. асчет и визуализация спектров входного и выходного сигналов

Для расчета и просмотра спектра сигнала в рабочем окне **GUI** – программы **SPTool** (Рис. 13) необходимо выполнить действия:

- в поле **Signals** выделить имя сигнала;
- в поле **Spectra** нажать кнопку **Create** (создать), появится окно **Spectrum Viewer** (Рис. 17) с именем спектра сигнала (имена спектров задаются автоматически и последовательно spect1,2,...);
- в окне **Spectrum Viewer** необходимо указать метод расчета спектра **FFT**, задать количество точек, по которым рассчитывается спектр **Nfft** равное ближайшему 2^n ; нажать кнопку **Apply**.

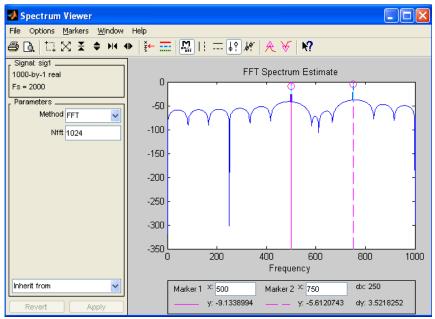


Рис. 17. Окно GUI – программы SPTool (Spectrum Viewer)

В окне **Spectrum Viewer** появится график амплитудного спектра (модуль ДПФ). Имеется возможность управления масштабом. На рис. 17 приведен спектр сигнала из примера $x=1*\sin(w1*n)+1.5*\sin(w2*n)$.

3. Синтез цифрового фильтра

Поле **Filters** содержит четыре кнопки:

View – просмотр характеристик фильтра,

New Design – синтез нового фильтра,

Edit Design – изменение требований к фильтру и его синтез без изменения имени фильтра,

Apply — моделирование процедуры фильтрации сигнала, имя которого выделено в поле **Signals**, фильтром, имя которого выделено в поле **Filters**.

В поле **Filters** содержатся имена синтезированных ранее и сохраненных цифровых фильтров, если они отсутствуют, то активизирована только иконка **New** (Puc. 13), в которой выполняются следующие действия:

Ввод исходных данных для синтезируемого ЦФ:

- частота дискретизации в Гц (Sampling frequency),
- вид фильтра и метод аппроксимации (**Algorithm**). Для синтеза нерекурсивных ЦФ может быть выбран один из следующих методов:

Equiripple FIR – оптимальной фильтрации Чебышева,

Least Squares FIR – наименьших квадратов,

Kaiser Window FIR – окон Кайзера.

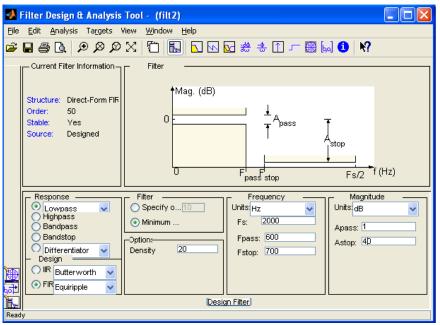


Рис. 18. Окно GUI – программы SPTool (Filter Designer)

При синтезе рекурсивных ЦФ используется метод билинейного преобразования со следующими типами аппроксимации:

Butterworth IIR – Баттерворта,

Chebyshev Type 1IIR – Чебышева 1-го типа,

Chebyshev Type 2 IIR – Чебышева 2-го типа,

Elliptic IIR – эллиптический (Золотарева – Кауэра).

На поле **Response**:

– тип избирательности фильтра:

lowpass – ФНЧ (в примере рис. 18 фильтр НЧ),

highpass – $\Phi B \Psi$,

bandpass – полосовой фильтр ($\Pi\Phi$),

bandstop – режекторный фильтр (РФ).

Требования к характеристике ослабления (затухания):

в поле Frequency:

- частота дискретизации $\mathbf{F}\mathbf{s}$ в Γ ц (на рис. 18 $\mathbf{F}\mathbf{s}$ =2000),
- в полосе (в полосах) пропускания (**Passband**) граничная частота (частоты) **Fpass** в Гц (на рис. 18 **Fpass=600**),
- в полосе (в полосах) задерживания (**Stopband**) граничная частота (частоты) **Fstop** в Гц (на рис. 18 **Fstop=700**),

ослабление (затухание) в поле Magnitude в дБ:

в полосе пропускания максимально допустимое ослабление **Apass** в дБ (на рис. 18 Apass = 1),

в полосе задерживания минимально допустимое ослабление **Astop** в дБ (на рис. 18 **Astop** = **40**).

Синтез Ц Φ по введенным требованиям производится нажатием на иконку **Design Filter**.

Для вывода данных о синтезированном ЦФ используются следующие элементы:

- график АЧХ (в центре Frequency Response).
- порядок ЦФ (Order на правом поле Measurements),
- действительное отклонение в полосах пропускания (**Passband**) и задерживания (**Stopband**),
 - коэффициенты фильтра,
- имя синтезированного ЦФ в окне (Filter) задается автоматически (filt1, 2...).
- После синтеза ЦФ окно **Filter Designer** закрывается (**File/Close**) и происходит переход в первое окно. Информация о синтезированном фильтре в виде массива записей хранится в файле filtN. Имя фильтра появляется в первом окне программы **SPTool**.

Анализ характеристик синтезированного ЦФ

Для анализа характеристик синтезированного ЦФ необходимо выполнить следующие действия.

В поле **Filters** первого окна **SPTool** выделить имя ЦФ. Нажать кнопку **View**. Откроется окно **Filter Viewer** (Puc. 19).

Экспорт данных из Matlab

В процессе синтеза фильтра в Matlab проводится расчет коэффициентов просмотр фильтра, которых осуществляется нажатием иконки Коэффициенты фильтра могут использоваться для проектирования реального ЦФ, например, на сигнальном процессоре. Для дальнейшего использования процессоре TMS320C5510 коэффициентов сигнальном В синтезировать фильтр с частотой дискретизации 48000Гц, что соответствует частоте дискретизации кодека.

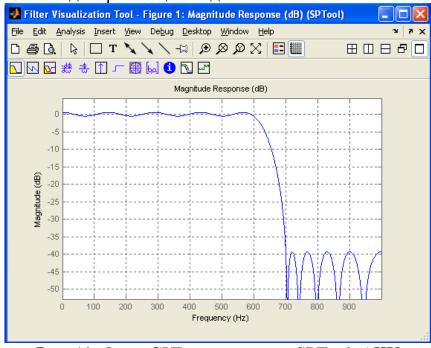


Рис. 19. Окно GUI – программы SPTool. AЧX фильтра (Filter Viewer)

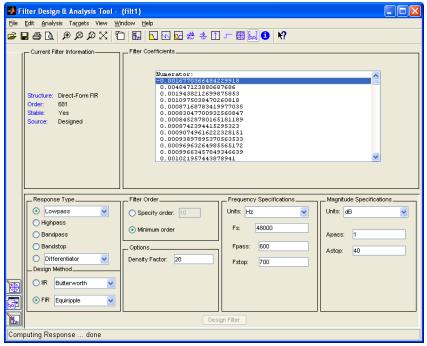


Рис. 20. Окно GUI – программы SPTool. Коэффициенты фильтра (Filter Viewer)

Для экспорта коэффициентов фильтра из **Matlab** необходимо создать отдельный файл, в котором будут сохранены коэффициенты, необходимо выбрать в меню **File/Export**, в появившемся окне в поле **Export To** (Рис. 21) выбрать строку **Coefficient File** (**ASCII**), затем нажать иконку **Export**.

Рис. 21. Окно GUI – программы SPTool (Export)

В появившемся окне (Рис. 22) указать имя файла и путь для его сохранения.

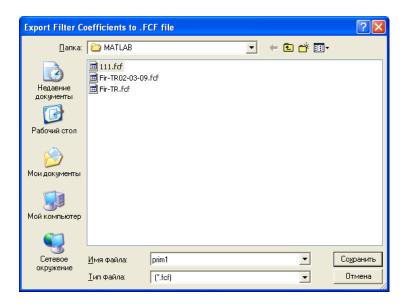


Рис. 22. Окно GUI – программы SPTool (Export Filter Coefficients)

Нажать кнопку **Сохранить**, что позволит создать файл коэффициентов, на (Рис. 23) приведен пример фрагмента сформированного файла.

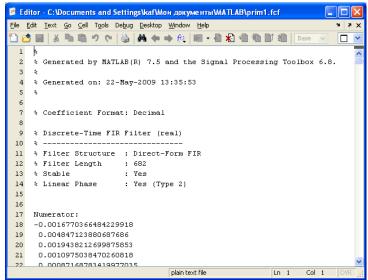


Рис. 23. Фрагмент файла коэффициентов фильтра

4. Моделирование процесса фильтрации

После синтеза ЦФ и импортирования входного сигнала можно моделировать процесс фильтрации. Для этого необходимо выполнить следующие действия:

- в поле **Signals** рабочего окна **GUI** программы **SPTool** (Рис. 13) выделить имя сигнала;
- в поле Filters рабочего окна GUI программы SPTool (Рис.13) выделить имя фильтра;
- в поле **Filters** нажать кнопку **Apply**, после чего в появившемся окне **Apply Filters** (Рис. 24) отобразятся имена выделенных сигнала и фильтра. Если устраивает имя входного сигнала (иначе его можно изменить), то следует

нажать кнопку **ОК**, после чего произойдет возврат в окно **GUI** — программы **SPTool** (Рис. 13).

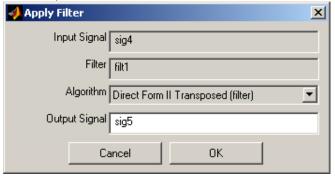


Рис. 24. Окно GUI – программы SPTool (Apply Filter)

Можно в поле **Signals** рабочего окна **GUI** – программы **SPTool** (Рис. 13) выделить одновременно входной и выходной сигналы, удерживая клавишу **CTRL**, и, нажав кнопку **View**, в окне **Signal Browser** по очереди просмотреть сигналы, указывая в **Selection** их имена.

В рассматриваемом примере фильтрации входного сигнала цифровым ФНЧ получены осциллограмма и спектр выходного сигнала с «подавленной» гармоникой на частоте 750Гц. (Рис. 25,26)

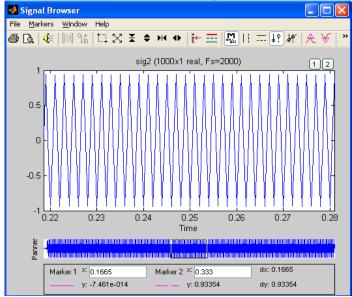


Рис. 25. Осциллограмма выходного сигнала

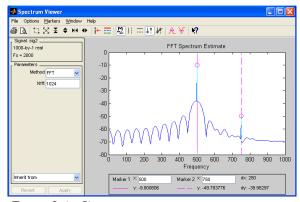


Рис. 26. Спектр выходного сигнала

5. Выход из программы SPTool

При выходе из программы **SPTool** автоматически запрашивается необходимость сохранения данных (сигналов, фильтров, спектров). В случае положительного ответа данные сохраняются в файлах со своими именами с расширением .spt на диске в папке work\startup.spt. Сохраненные файлы могут использоваться для последующей работы в **SPTool**.

Практическая часть

Задание 1. Моделирование входного сигнала.

- 1.1. В MATLAB (в М-файле) задать сигнал $S(t)=M*Sin(M*\omega*t)+M*Sin(3*M*\omega*t)$ в соответствии с Вашим вариантом, где М номер варианта, $\omega=2\Box f=2\Box 10^2$.
- 1.2. Импортировать сигнал в программный пакет **SPTool**. Исследовать и зарисовать в масштабе осциллограмму и спектр входного сигнала, для большей наглядности подать сигнал на динамик и прослушать. Зарисовать в масштабе осциллограмму и спектр входного сигнала.

Задание 2. Синтез цифровых фильтров.

- 2.1. В программном пакете **SPTool** синтезировать ФНЧ, с частотой среза $f_{cp}=2*M*10^2\Gamma$ ц. Зарисовать АЧХ фильтра в масштабе.
- 2.2. Синтезировать ФВЧ, с частотой среза $f_{cp}=2*M*10^2\Gamma$ ц. Зарисовать АЧХ фильтра в масштабе.

Задание 3. Моделирование входного сигнала.

- 3.1. Наложить синтезированный ФНЧ на входной сигнал (передать сигнал через ФНЧ). Просмотреть осциллограмму и спектр сигнала на выходе фильтра, прослушать выходной сигнал. Зарисовать в масштабе осциллограмму и спектр выходного сигнала.
- 3.2. Наложить синтезированный ФВЧ на входной сигнал (передать сигнал через ФВЧ). Просмотреть осциллограмму и спектр сигнала на выходе фильтра, прослушать выходной сигнал. Зарисовать в масштабе осциллограмму и спектр выходного сигнала.

Контрольные вопросы

- 1. Приведите идеализированные АЧХ фильтров: ФНЧ, ФВЧ.
- 2. Дайте определение: спектра сигнала, дискретного преобразования Фурье.
- 3. Укажите условия прохождения сигнала по цепи без искажения для цифровых ФНЧ, ФВЧ.

Лабораторная работа №5

Моделирование процесса цифровой фильтрации с применением сигнального процессора TMS320C5510

Цель работы: Натурное моделирование процесса цифровой фильтрации радиотехнических сигналов с применением сигнального процессора TMS320C5510.

Теоретическая часть

Процедура цифровой фильтрации сигнала включает в себя следующие операции:

- 1) Синтез коэффициентов ЦФ и анализ его характеристик в MatlabR2007b GUI SPTool.
- 2) Генерирование входного сигнала с применением генератора тона, встроенного в ПК.
- 3) Подготовка программы для сигнального процессора TMS320C5510, на основе которого реализуется фильтр с фиксированной частотой дискретизации Fдискр.=48 кГц. Кроме процессора в состав фильтра входит кодек, предназначенный для приема и оцифровки входного сигнала, а также для преобразования отфильтрованного цифрового выходного сигнала в аналоговый.
- 4) Отладка программы и контроль работы фильтра (используется компьютерный генератор тона, программно-аппаратный осциллограф, предназначенный для отображения входного и выходного сигналов).

Рассмотрим пример процесса цифровой фильтрации радиотехнических сигналов $s(t)=Sin(2*\square*500*t)+Sin(2*\square*750*t)$ нерекурсивным ЦФНЧ с частотой среза fcp.=600 Γ ц и частотой дискретизации fдискр.=48 κ Γ ц с применением сигнального процессора TMS320C5510.

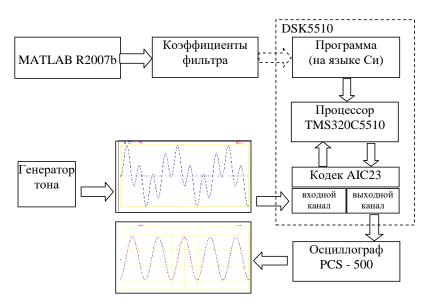


Рис. 27. Направления передачи информационных потоков

1) Синтез коэффициентов ЦФ Matlab R2007b GUI SPTool

Подробно процедура синтеза коэффициентов фильтра в **Matlab R2007b** рассмотрена в лабораторной работе №4 пункте 3 (Синтез ЦФ. Экспорт данных из Matlab). В примере создан файл **prim1.fcf** коэффициентов проектируемого фильтра.

2) Генерация входного сигнала

Подробно процесс генерации входного сигнала описан в лабораторной работе №2 в пункте "Исследование дискретизации сигналов". Необходимо

задать в тон - генераторе 2 гармонических сигнала с частотами 500Гц и 750Гц и запустить генератор.

3) Подготовка программы для сигнального процессора TMS320C5510

Универсальный текст программы фильтрации сигнала (файл **FIR_Codec1.c**), разработанный в оболочке **Code Compose Studio**, приведен полностью и может быть использован без дополнительного редактирования.

Текст программы (файл FIR_Codec1.c)

```
//подключение заголовочных файлов библиотек
#include "FIR Codec1cfg.h"
#include "dsk5510.h"
#include "dsk5510 aic23.h"
#include <stdio.h>
#include <math.h>
#include <tms320.h>
#include <dsplib.h>
// подключение файла коэффициентов фильтра
#include "Filter_parameter.h"
//рабочие параметры программы
short ii;
DATA *dbptr = \&db[0];
/* Параметры конфигурации кодека */
DSK5510 AIC23 Config config = {
  0x0017, // 0 DSK5510_AIC23_LEFTINVOL
  0x0017, // 1 DSK5510 AIC23 RIGHTINVOL
  0x00d8, // 2 DSK5510_AIC23_LEFTHPVOL
  0x00d8, // 3 DSK5510 AIC23 RIGHTHPVOL
  0x0011, // 4 DSK5510_AIC23_ANAPATH
  0x0000, // 5 DSK5510 AIC23 DIGPATH
  0x0000, // 6 DSK5510_AIC23_POWERDOWN
  0x0043, // 7 DSK5510 AIC23 DIGIF
  0x0081, // 8 DSK5510_AIC23_SAMPLERATE
  0x0001 // 9 DSK5510_AIC23_DIGACT };
/* входной сигнал sinetable 16-разрядные значения */
Int16 sinetable[SINE TABLE SIZE].sinevosst[SINE TABLE SIZE]:
int sinetableZN[SINE_TABLE_SIZE];
Int16 WriteSignal[SINE_TABLE_SIZE];
float Amp, Amp1;
double W,W1;
int i,TABLE SIZE,m,k;
void main()
DSK5510_AIC23_CodecHandle hCodec;
Int16 msec; //, Int=1000;
Int16 ReadData; //, sample;
Amp=0x7fff;
```

```
/* Инициализация платы DSK5510 */
DSK5510_init();
/* Запуск кодека */
hCodec = DSK5510_AIC23_openCodec(0, &config);
/*обнуление массива входного сигнала*/
for (i=0;i<SINE_TABLE_SIZE;i++)
   {sinetable[i]=0;};
//считыв. сигнала с генер. тона и передача его на выходы кодека
for (msec = 0; msec < 200; msec++)
  \{ \text{for } (i = 0; i < \text{SINE\_TABLE\_SIZE}; i++) \}
    { DSK5510_AIC23_read16(hCodec, &ReadData);
      sinetable[i]=ReadData;
      /* Передача очередного значения в левый канал */
      while (!DSK5510_AIC23_write16(hCodec,2*sinetable[i]));
      /* Передача очередного значения в правый канал */
      while (!DSK5510_AIC23_write16(hCodec,2*sinetable[i]));
    };
  };
// обнуление массива выходных значений
for (i=0; i<SINE_TABLE_SIZE; i++) sinFilter[i] = 0;
for (i=0; i<NH+2; i++)
                       db[i] = 0;
//пересчет коэффициентов фильтра в рабочий диапазон кодека
for (i=0; i< NH; i++) hh[i]=h[i]*32767;
// обработка входного сигнала с применением стандартного
// нерекурсивного фильтра
fir(sinetable, hh, sinFilter, dbptr, SINE TABLE SIZE, NH);
// передача отфильтрованного сигнала на оба канала кодека для
// отображения на осциллографе и прослушивания на динамике
for (msec = 0; msec < 5000; msec++)
  {for (i = 0; i < SINE TABLE SIZE; i++)
      /* Передача в левый канал */
      while (!DSK5510_AIC23_write16(hCodec, sinFilter[i]));
      /* Передача в правый канал */
      while (!DSK5510_AIC23_write16(hCodec, sinFilter[i]));
     };
  };
    /* Останов кодека */
DSK5510_AIC23_closeCodec(hCodec);
  Текст файла коэффициентов фильтра Filter_parameter.h должен быть
отредактирован в соответствии с параметрами разрабатываемого фильтра:

    необходимо задать число коэффициентов фильтра NH;

      скопировать из сгенерированного с помощью
                                                           MATLAB
                                                                      файла
коэффициенты и вставить их в массив h на место имеющихся в примере;
```

– в полученном массиве добавить запятую после каждого коэффициента.

Текст программы (фрагмент файла Filter_parameter.h)

```
/* длина массива входного сигнала */
#define SINE_TABLE_SIZE 1000
#define NH 949 // число коэффициентов фильтра
// рабочий массив фильтра
DATA db[NH+2];
//массив выходных значений
DATA sinFilter[SINE TABLE SIZE];
//коэффициенты фильтра - mun DATA
DATA hh[NH];
//коэффициенты фильтра - mun float
float h[NH] = {
-0.00061621441550795348,
-0.00012134336854986053.
-0.00061621441550795348
};
```

4) Отладка программы и контроль работы фильтра

Процесс отладки программы и контроль работы фильтра осуществляется с помощью оболочки Code Compose Studio и осциллографа PCS-500, отображающего осциллограммы и спектры входного и отфильтрованного сигналов.

Подготовленная и откомпилированная программа загружается в сигнальный процессор. Затем на ПК запускается генератор тона, формирующий гармонические сигналы с заданными частотами в полосе пропускания и в полосе задерживания ЦФ. После запуска программы на сигнальном процессоре, результаты ее работы можно наблюдать на осциллографе. На рис.28 и 29 приведен пример осциллограммы и спектра входного сигнала, а на рис.30,31 выходного сигнала.

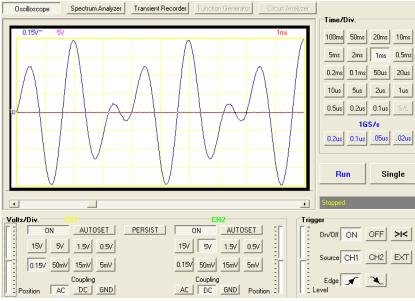


Рис. 28. Осциллограмма входного сигнала с fдискретизации =48000Гц

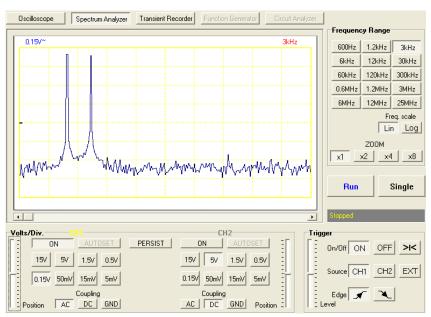


Рис. 29. Спектр входного сигнала с fдискретизации =48000Ги

Рис. 30. Осциллограмма выходного сигнала с fдискретизации =48000Гц

характер: Выходной (осциллограмма) импульсный сигнал носит (отфильтрованный) гармонический переходный процесс. сигнал И Осциллограмма отклика ЦФ, реализованного для реального устройства, для рассматриваемого примера будет содержать только гармонический сигнал. Переходный процесс реализуется только на начальном этапе работы ЦФ и занимает короткий промежуток времени, но качественно он характеризует специфику структуры ЦФ, поэтому в лабораторной работе задан цикл обработки конечного массива входных выборок сигнала для наглядной демонстрации переходного процесса. В соответствии с вышеизложенным, спектр отклика ЦФ соответствует импульсному сигналу (Рис. 31).

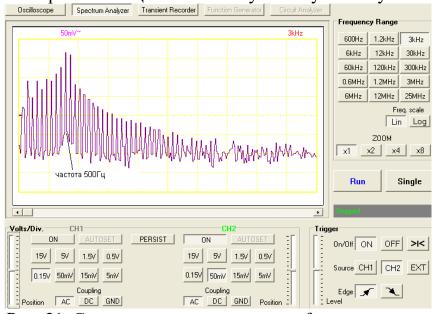


Рис. 31. Спектр выходного сигнала с fдискретизации =48000Гц

Практическая часть

<u>Задание 1.</u> Моделирование процесса цифровой фильтрации сигнала фильтром низкой частоты.

- 1.1. Провести моделирование процесса цифровой фильтрации для сигнала из лабораторной работы №4 $S(t)=M*Sin(M*\omega*t)+M*Sin(3*M*\omega*t)$ в соответствии с Вашим вариантом, где M номер варианта, $\omega=2\Box f=2\Box 10^2$ нерекурсивным цифровым фильтром низкой частоты, подавляющим сигнал с частотой $\omega_{\text{верхняя}}=3*M*\omega$, в соответствии с примером, приведенным в теоретической части лабораторной работы №5.
- 1.2. Просмотреть и зарисовать (распечатать) осциллограммы, спектры; прослушать звучание входного и отфильтрованного сигналов (вывести сигналы на динамики).
- 1.3. Изменить параметры сигнала, увеличивая количество гармоник сигнала до 4 (в полосах пропускания и задерживания). Провести моделирование, просмотреть и зарисовать (распечатать) осциллограммы, спектры.
- 1.4. Проанализировать полученные результаты, письменно сделать выводы. Задание 2. Моделирование процесса цифровой фильтрации сигнала фильтром высокой частоты.
- 2.1. Провести моделирование процесса цифровой фильтрации для сигнала $S(t)=M*Sin(M*\omega*t)+M*Sin(3*M*\omega*t)$ в соответствии с Вашим вариантом, где M-H номер варианта, $M=2 \square f=2 \square 10^2$ нерекурсивным цифровым фильтром высокой частоты, подавляющим сигнал с частотой $M=M*\omega$, в соответствии с примером, приведенным в теоретической части лабораторной работы M=0.

- 2.2. Просмотреть и зарисовать (распечатать) осциллограммы, спектры; прослушать звучание входного и отфильтрованного сигналов (вывести сигналы на динамики).
- 2.3. Изменить параметры сигнала, увеличивая количество гармоник сигнала до 4 (в полосах пропускания и задерживания). Провести моделирование, просмотреть и зарисовать (распечатать) осциллограммы, спектры.
 - 2.4. Проанализировать полученные результаты, письменно сделать выводы.

Контрольные вопросы

- 1. Приведите идеализированные АЧХ фильтров: ФНЧ, ФВЧ.
- 2. Укажите условия прохождения сигнала по цепи без искажения для цифровых ФНЧ, ФВЧ.
- 3. Поясните методику фильтрации сигналов цифровыми фильтрами с применением сигнального процессора TMS320C5510.

Литература

- 1. Принципы цифровой обработки сигналов в радиоэлектронном оборудовании: учеб пособие для студентов очного обучения по специальности 160905 «Техническая эксплуатация транспортного радиооборудования» / Т. В. Гордяскина, Л.С. Грошева. Н. Новгород: Издво ФГОУ ВПО «ВГАВТ», 2008. 35с.
- 2. Гадзиковский В. И. Методы проектирования цифровых фильтров.— М.: Горячая линия Телеком, 2007. —416 с.: ил.
- 3. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник. М.: Высш. Школа., 2000.-462 с.
- 4. Цифровые сигнальные процессоры в радиооборудовании. Архитектура и прикладные задачи: учеб.-метод. пособие для студ. днев. обуч. по специальности 160905 «Техническая эксплуатация транспортного радиооборудования» / Л.С. Грошева, В.И. Мерзляков. Н. Новгород: Изд-во ФГОУ ВПО «ВГАВТ», 2007. 70с.

Содержание

1. Лабораторная работа №1	
Исследование математических моделей детерминированных сигналов	3
2. Лабораторная работа №2 Дискретизация гармонических сигналов на аппаратном комплексе TMS320C5510 DSK	10
3. Лабораторная работа №3 Моделирование фильтров в Matlab R2007b	17
 Лабораторная работа №4 Моделирование процесса цифровой фильтрации в Matlab R2007b 	18
5. Лабораторная работа №5 Моделирование процесса цифровой фильтрации с применением сигнального процессора TMS320C5510	29
Литература	36

Гаджиев Хаджимурат Магомедович Гаджиева Солтанат Магомедовна Челушкина Татьяна Алексеевна

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Цифровая обработка сигналов в радиотехнике» для студентов направления подготовки магистров 11.04.01 «Радиотехника», программа «Системы и устройства передачи, приема и обработки сигналов»

Формат 60х84 1/16. Бумага офсетная. Печать ризограф. Усл. п. л. 3,0. Тираж 50 экз. Заказ №

Отпечатано в ИПЦ ДГТУ. 367015, г. Махачкала, пр. Имама Шамиля, 70