Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор

Дата подписания: 31.10.2025 15:08:50 Уникальный программный ключ:

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Институт комплексной безопасности и специального приборостроения

Региональный партнер ФГБОУ ВО «Дагестанский государственный технический университет»

	Z	/ТВЕРЖДАЮ
Врио рект	ора ФГБО	ОУ ВО «ДГТУ»
	H.	Л. Баламирзоен
«	»	2022 г

Рабочая программа дисциплины (модуля) **Б1.В.01 Архитектура интеллектуальных систем**

Читающее подразделение

Направление 09.04.04 Программная инженерия

Направленность Системы искусственного интеллекта

Квалификация магистр

Форма обучения очная, очно-заочная, заочная

Общая трудоемкость 4 з.е.

Распределение часов дисциплины и форм промежуточной аттестации по семестрам

ſ			Распределение часов							
	Семестр	Зачётные единицы	Beero	Лекции	Лабораторные	Практические	Самостоятельная работа	Контактная работа в период практики и (или) аттестации	Контроль	Формы промежуточной аттестации
	2	4	144	9	0	17	82	0,4	35,6	Экзамен
	3	4	144	6	0	9	93	0	36	Экзамен
	3	4	144	3	0	6	126	0	9	Экзамен

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина «Архитектура интеллектуальных систем» имеет своей целью способствовать формированию у обучающихся компетенций предусмотренных данной рабочей программой в соответствии с требованиями ФГОС ВО по направлению подготовки 09.04.04 Программная инженерия с учетом специфики направленности подготовки — «Системы искусственного интеллекта». Целью освоения дисциплины (модуля) является ознакомление учащихся с современным состоянием в области искусственного интеллекта, принципами и подходами к построению интеллектуальных систем, а также рассмотрение конкретных представителей подобного класса систем.

2.МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Направление: 09.04.04 Программная инженерия Направленность: Системы искусственного интеллекта

Блок:Дисциплины (модули)Часть:Вариативная частьОбщая трудоемкость:4 з.е. (144 акад. час.).

3.КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен овладеть компетенциями:

- ПК-1.1- Исследует и разрабатывает архитектуры систем искусственного интеллекта для различных предметных областей
- ПК-1.2— Выбирает комплексы методов и инструментальных средств искусственного интеллекта для решения задач в зависимости от особенностей предметной области
- ПК-1.3— Разрабатывает единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения, а также определяет критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях улучшения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта
- ПК-2.1- Разрабатывает программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.
- ПК-2.2— Модернизирует программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.
- ПК-3.1— Ставит задачи по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области.
- ПК-5.1— Руководит разработкой архитектуры комплексных систем искусственного интеллекта.
- ПК-6.1- Выбирает и разрабатывает программные компоненты систем искусственного интеллекта.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ХАРАКТЕРИЗУЮЩИЕ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

ПК-1.1- Исследует и разрабатывает архитектуры систем искусственного интеллекта для различных предметных областей.

знать: архитектурные принципы построения систем искусственного интеллекта, методы декомпозиции основных подсистем компонентов) и реализации их взаимодействия на основе методологии предметно-ориентированного проектирования.

уметь: выстраивать архитектуру системы искусственного интеллекта, осуществлять декомпозицию основных подсистем (компонентов) и реализации их взаимодействия на основе методологии предметно-ориентированного проектирования.

ПК-1.2 - Выбирает комплексы методов и инструментальных средств искусственного интеллекта для решения задач в зависимости от особенностей предметной области.

знать: методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и методы комплексирования в рамках создания интегрированных гибридных интеллектуальных систем различного назначения.

*уметь:*Выбирать, применять и интегрировать методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и методы комплексирования в рамках создания интегрированных гибридных интеллектуальных систем различного назначения.

ПК-1.3. Разрабатывает единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения, а также определяет критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях улучшения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта

знать: единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения технологий и систем искусственного интеллекта; методики определения критериев сопоставления программного обеспечения и критериев эталонных открытых тестовых сред (условий).

уметь: применять и разрабатывать единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных системи программного обеспечения технологий и систем искусственного интеллекта; определять критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях определения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта.

ПК-2.1. - Разрабатывает программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.

знать: основные критерии разработки функционирования системы искусственного интеллекта: точность, релевантность, достоверность, целостность, быстрота решения задач, надежность, защищенность функционирования систем искусственного интеллекта; методы, языки и программные средства разработки программных компонентов систем искусственного интеллекта.

уметь: выбирать, адаптировать, разрабатывать и интегрировать программные компоненты систем искусственного интеллекта с учетом основных критериев эффективности и качества функционирования

ПК-2.2. - Модернизирует программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом

требований информационной безопасности в различных предметных областях.

знать: методы постановки задач модернизации программного и аппаратного обеспечения, проведения и анализа тестовых и экспериментальных испытаний работоспособности систем искусственного интеллекта; требований информационной безопасности в различных предметных областях.

уметь: ставить задачи и проводить тестовые и экспериментальные испытания работоспособности систем искусственного интеллекта анализировать результаты и вносить изменения.

ПК-3.1. Ставит задачи по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области

знать: классы методов и алгоритмов машинного обучения.

уметь: ставить задачи и разрабатывать новые методы и алгоритмы машинного обучения

ПК-5.1— Руководит разработкой архитектуры комплексных систем искусственного интеллекта.

знать: функциональность современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей.

уметь: проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения; применять современные инструментальные средства и системы программирования для разработки и обучения моделей искусственных нейронных сетей.

ПК-6.1- Выбирает и разрабатывает программные компоненты систем искусственного интеллекта.

знать: методологию и принципы разработки программных компонентов, поддержке и использованию комплексных систем на основе аналитики больших данных; специфику сфер и отраслей, для которых реализуется проект по аналитике больших данных.

уметь: решать задачи по выбору программных компонентов для создания, поддержки и использования комплексных систем на основе аналитики больших данных; сосредотачивать внимание на целях, достижение которых обеспечивает большую отдачу и сильное воздействие; формировать матрицу приоритетов, включая критерии отбора проектов для реализации.

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ОБУЧАЮЩИЙСЯ ДОЛЖЕН

В результате изучения дисциплины студент должен:

знать:

- базовые теоретические аспекты мыслительных способностей человека и способы их реализации компьютерными средствами;
- теоретические основы систем искусственного интеллекта, модели представления и методы обработки знаний, принципы естественно-языкового интерфейса, распознавания образов и синтеза речи;
- основные понятия и принципы нейронных сетей как наиболее распространенных прикладных систем искусственного интеллекта, применяемых в задачах по распознаванию образов;
- способы практической реализации моделей знаний, применяемых в системах искусственного интеллекта.

уметь:

- применять понятийно-категориальный аппарат и основные принципы систем искусственного интеллекта в профессиональной деятельности,
- применять инструментальные средства систем искусственного интеллекта.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебных занятий организация обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

№	Наименование разделов и тем /вид	Сем.	Часов	Компетенции	
	занятия/ Введение в интеллектуальные системы и технологии (ИСиТ)				
1	Лекция №1. Базовые понятия искусственного интеллекта. Философские аспекты проблемы систем искусственного интеллекта (СИИ) (возможность существования, безопасность, полезность). История развития систем ИИ.	2	2	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1 ПК-2.2 ПК-3.1 ПК-5.1 ПК-6.1	
2	Практическое занятие №1 Актуальность дисциплины. Место дисциплины среди других наук. Основные понятия. Понятие и определения.	2	2		
3	Практическое занятие №2	2	2		
4	Подготовка к аудиторным занятиям (Ср)	2	20		
5	Лекция №2. Знания и их классификация. Модели и формы знаний	2	2	ПК-1.1 ПК-1.2 ПК-1.3	
6	Практическое занятие №3 Принципы построения и архитектура СИИ	2	2	ПК-2.1 ПК-2.2 ПК-3.1	
7	Практическое занятие №4 Задача распознавания образов. Системы распознавания образов.	2	2	ПК-5.1 ПК-6.1	
8	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	2	20		
9	Лекция №3. Современные архитектуры нейронных сетей. Научные и промышленные приложения	2	2	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1	
10	Практическое занятие №5 Нейронные сети. История исследований в области нейронных сетей. Свойства процессов обучения в нейронных сетях.	2	2	ПК-2.2 ПК-3.1 ПК-5.1 ПК-6.1	
	Практическое занятие №6	2	2		
11	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	2	20		
12	Лекция №4. Иерархическая организация нейросетевых архитектур. Многослойный перцептрон, сети обратного и встречного	2	2	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1	

	распространения ошибки, карта			ПК-2.2
	1			ПК-2.2
	Кохоннена, модель Липмана			
	Хемминга.			ПК-5.1
	Практическое занятие №7			ПК-6.1
13	Модель Хопфилда, обучение без	2	2	
	учителя, методы Хебба. Когнитрон и			
	неокогнитрон.			
14	Практическое занятие №8	2	2	
	Метод потенциальных функций. Метод			
	группового учета аргументов. Метод			
	предельных упрощений. Коллективы			
	решающих правил.			
15	Подготовка к аудиторным занятиям и	2	20	
	выполнение домашнего задания (Ср).			
16	Лекция №5.	2	1	ПК-1.1
	Методы и алгоритмы анализа	_		ПК-1.2
	структуры многомерных данных			ПК-1.3
	Эволюционные методы построения			ПК-2.1
	СИИ			ПК-2.2
17	Практическое занятие №9	2	1	ПК-3.1
1 /	Эволюционные методы построения	2	1	ПК-5.1
	СИИ			ПК-5.1
10		2	10	- 11IX-U.1
18	Подготовка к аудиторным занятиям и	<u> </u>	12	
10	выполнение домашнего задания (Ср).			THE 1 1
19	Промежуточная аттестация (экзамен)			ПК-1.1
20	Подготовка к сдаче промежуточной	1	35,6	ПК-1.2
	аттестации (Экзамен)			ПК-1.3
21	Контактная работа с преподавателем	1	0,4	ПК-2.1
	в период промежуточной аттестации			ПК-2.2
	(КрПА).			ПК-3.1
				ПК-5.1
				ПК-6.1

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

5.1. Перечень компетенций

Перечень компетенций, на освоение которых направлено изучение дисциплины «Архитектура интеллектуальных систем», с указанием результатов их формирования в процессе освоения образовательной программы, представлен в п.3 настоящей рабочей программы.

5.2. Типовые контрольные вопросы и задания

- 1. Модель Хопфилда, обучение без учителя, методы Хебба. Когнитрон и неокогнитрон.
- 2. Метод потенциальных функций.
- 3. Обучение в интеллектуальных системах.
- 4. Этапы проектирования ИИС.
- 5. Метод группового учета аргументов.
- 6. Метод предельных упрощений. Коллективы решающих правил.
- 7. Иерархическая организация нейросетевых архитектур.
- 8. Многослойный перцептрон, сети обратного и встречного распространения ошибки, карта Кохоннена, модель Липмана Хемминга.
- 9. Анализ предметной области и методы приобретения знаний.
- 10. Работа с экспертами и проблема извлечения знаний.
- 11. Интеллектуальный анализ данных.
- 12. Интеллектуальные системы распознавания образов.
- 13. Основные понятия нейронных сетей.
- 14. Моделирование знаний и рассуждений на основе нейронных сетей
- 15. Многоагентные системы.
- 16. Представление знаний в системах ИИ.
- 17. Типы знаний.
- 18. Декларативные и процедурные знания.
- 19. Фреймовая модель представления знаний.
- 20. Семантические сети.
- 21. Продукционные системы.

5.3. Фонд оценочных материалов

Полный перечень оценочных материалов представлен в приложении 1

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование помещений	Перечень основного оборудования
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения занятий	Мультимедийное оборудование,
лекционного и семинарского типа,	специализированная мебель, наборы
групповых и индивидуальных	демонстрационного оборудования и
консультаций, текущего контроля и	учебно- наглядных пособий,
промежуточной аттестации	обеспечивающие тематические
	иллюстрации.
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения занятий	Мультимедийное оборудование,
лекционного и семинарского типа,	специализированная мебель, наборы
групповых и индивидуальных	демонстрационного оборудования и
консультаций, текущего контроля и	учебно- наглядных пособий,
промежуточной аттестации	обеспечивающие тематические
	иллюстрации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно-образовательную среду
	организации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно- образовательную среду
	организации.

6.2. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

МісгоsoftWindows. Договор №32009183466 от 02.07.2020 г. Місгоsoft Office. Договор №32009183466 от 02.07.2020 г.

6.3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

6.3.1. Основная литература

1. Интеллектуальные информационные системы и технологии: учебное пособие / Ю.Ю. Громов, О.Г. Иванова, В.В. Алексеев и др.; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет». - Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2013. - 244 с.:

- ил. Библиогр. в кн. ISBN 978-5-8265-1178-7; [Электронный ресурс]. URL: http://www.biblioclub.ru/index.php?page=book&id=277713
- 2. Серегин, М.Ю. Интеллектуальные информационные системы: учебное пособие / М.Ю. Серегин, М.А. Ивановский, А.В. Яковлев; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет». Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2012. 205 с.: ил.- Библиогр. в кн.;
- 3.[Электронный ресурс]. URL: http://www.biblioclub.ru/index.php?page=book&id=277790

6.3.2. Дополнительная литература

- 1. Избачков Ю. С. Информационные системы: учебник / Ю.С. Избачков, В.Н. Петров.- СПб.: Питер, 2008. 656с.
- 2. Клейменов О.А. Администрирование в информационных системах: учебное пособие / О.А. Клейменов, В.П. Мельников, А.М. Петраков. М.: Академия, 2008. 272 с.
- 3. Фридман А.Я. Системы искусственного интеллекта: нейронные сети, учебное пособие / А.Я. Фридман, О.В. Фридман. Апатиты, КФ ПетрГУ, 2004.- 96 с.
- 4. Официальный сайт Российской ассоциации искусственного интеллекта http://www.raai.org/resurs/resurs.shtml.

6.4. РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ СОВРЕМЕННЫХ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Электронная информационно-образовательная среда АНО ВО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. Режим доступа: http://edu.nwotu.ru/ Учебно-информационный центр АНО ВО "СЗТУ" [Электронный ресурс]. Режим доступа: http://lib.nwotu.ru:8087/jirbis2/
- 2. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
- 4. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН) [Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/
- 5. http://qai.narod.ru Генетические и нейроэволюционные алгоритмы.
- 6. http://raai.org Российская ассоциация искусственного интеллекта.
- 7. http://ransmv.narod.ru Российская ассоциация нечетких систем и мягких вычислений.
- 8. http://www.aiportal.ru/ Статьи и файлы по основным направлениям исследований в области искусственного интеллекта.
- 9. http://www.citforum.ru ИТБиблиотека on-line.
- 10. http://www.ifel.ru/library/29-fuzzyeconomics.html Консалтинговаясеть International Fuzzy Economic Lab (IFEL). Применение нечёткой логики в экономике.
- 11. http://www.makhfi.com/KCM_intro.htm Введение в моделирование знаний
- 12. http://www.niisi.ru/iont/ni Российская ассоциация нейроинформатики.
- 13. http://www.osp.ru/titles Издательство «Открытые системы». Комплексная информационная поддержка профессионалов, отвечающих за построение масштабных компьютерных систем.

6.5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Самостоятельная работа студента направлена на подготовку к учебным занятиям и на развитие знаний, умений и навыков, предусмотренных программой дисциплины.

В соответствии с учебным планом дисциплина может предусматривать лекции, практические занятия и лабораторные работы, а также выполнение и защиту курсового проекта (работы). Успешное изучение дисциплины требует посещения всех видов занятий, выполнение заданий преподавателя и ознакомления с основной и дополнительной литературой. В зависимости от мероприятий, предусмотренных учебным планом и разделом 4, данной программы, студент выбирает методические указания для самостоятельной работы из приведённых ниже.

При подготовке к лекционным занятиям студентам необходимо: перед очередной лекцией необходимо просмотреть конспект материала предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях.

Практические занятия завершают изучение наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.

При подготовке к практическому занятию студенты имеют возможность воспользоваться консультациями преподавателя.

При подготовке к практическим занятиям студентам необходимо: приносить с собой рекомендованную преподавателем литературу к конкретному занятию;

до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия; в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, заданных для самостоятельного решения; в ходе семинара давать конкретные, четкие ответы по существу вопросов;

на занятии доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.

Студентам, пропустившим занятия (независимо от причин), не имеющие письменного решения задач или не подготовившиеся к данному практическому занятию, рекомендуется не позже чем в 2-недельный срок явиться на консультацию к преподавателю и отчитаться по теме, изученную на занятии.

Методические указания необходимые для изучения и прохождения дисциплины приведены в составе образовательной программы.

6.6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБУЧЕНИЮ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При

необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения лиц с ОВЗ.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Архитектура интеллектуальных систем

Назначение оценочных материалов

Фонд оценочных материалов (ФОМ) создается в соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их учебных достижений поэтапным требованиям основной профессиональной образовательной программе (ОПОП) при проведении входного и текущего оценивания, а также промежуточной аттестации обучающихся. ФОС является составной частью нормативно-методического обеспечения системы оценки качества освоения ОПОП ВО, входит в состав ОПОП.

Фонд оценочных материалов – комплект методических материалов, нормирующих процедуры оценивания результатов обучения, т.е. установления соответствия учебных достижений запланированным результатам обучения и требованиям образовательных программ, рабочих программ модулей (дисциплин).

Фонд оценочных материалов сформирован на основе ключевых принципов оценивания:

- валидности: объекты оценки должны соответствовать поставленным целям обучения;
- надежности: использование единообразных стандартов и критериев для оценивания достижений;
- объективности: разные студенты должны иметь равные возможности добиться успеха.

Основными параметрами и свойствами ФОМ являются:

- предметная направленность (соответствие предмету изучения конкретной учебной дисциплины);
- содержание (состав и взаимосвязь структурных единиц, образующих содержание теоретической и практической составляющих учебной дисциплины);
 - объем (количественный состав оценочных средств, входящих в ФОМ);
- качество оценочных средств и ФОМ в целом, обеспечивающее получение объективных и достоверных результатов при проведении контроля с различными целями.

Целью ФОМ является проверка сформированности у студентов компетенций:

Карта компетенций

Кирни компененции				
Контролируемые компетенции	Планируемый результат обучения			
ПК-1.1. Исследует и разрабатывает	ПК-1.1. Знает архитектурные принципы построения			
архитектуры систем искусственного	систем искусственного интеллекта, методы			
интеллекта для различных предметных	декомпозиции основных подсистем (компонентов) и			
областей	реализации их взаимодействия на основе методологии			
	предметно-ориентированного проектирования			
	ПК-1.1. Умеет выстраивать архитектуру системы			
	искусственного интеллекта, осуществлять			
	декомпозицию основных подсистем (компонентов) и			
	реализации их взаимодействия на основе методологии			
	предметно-ориентированного проектирования			
ПК-1.2. Выбирает комплексы методов и	ПК-1.2. Знает методы и инструментальные средства			
инструментальных средств	систем искусственного интеллекта, критерии их выбора			
искусственного интеллекта для решения	и методы комплексирования в рамках создания			
задач в зависимости от особенностей	интегрированных гибридных интеллектуальных систем			
предметной области	различного назначения			
	ПК-1.2. Умеет выбирать, применять и интегрировать			

	методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и
	методы комплексирования в рамках создания
	интегрированных гибридных интеллектуальных систем
	различного назначения
ПК-1.3. Разрабатывает единые	ПК-1.3. Знает единые стандарты в области
стандарты в области безопасности (в	безопасности (в том числе отказоустойчивости) и
том числе отказоустойчивости) и	совместимости программного обеспечения, эталонных
совместимости программного	архитектур вычислительных систем и программного
обеспечения, эталонных архитектур	обеспечения технологий и систем искусственного
вычислительных систем и программного	интеллекта
обеспечения, а также определяет	ПК-1.33нает методики определения критериев
критерии сопоставления программного	сопоставления программного обеспечения и критериев
обеспечения и критерии эталонных	эталонных открытых тестовых сред (условий)
открытых тестовых сред (условий) в	ПК-1.3. Умеет применять и разрабатывать единые
целях улучшения качества и	стандарты в области безопасности (в том числе
эффективности программного	отказоустойчивости) и совместимости программного
обеспечения технологий и систем	обеспечения, эталонных архитектур вычислительных
искусственного интеллекта	систем и программного обеспечения технологий и
	систем искусственного интеллекта
	ПК-1.3. Умеет определять критерии сопоставления программного обеспечения и критерии эталонных
	открытых тестовых сред (условий) в целях определения
	качества и эффективности программного обеспечения
	технологий и систем искусственного интеллекта
ПК-2.1Разрабатывает программное	ПК-2.1. Знает основные критерии разработки
и аппаратное обеспечение	функционирования системы искусственного
технологий и систем искусственного	интеллекта: точность, релевантность, достоверность,
интеллекта для решения	целостность, быстрота решения задач, надежность,
профессиональных задач с учетом	защищенность функционирования систем
требований информационной	искусственного интеллекта
безопасности в различных	ПК-2.1. Знает методы, языки и программные средства
предметных областях.	разработки программных компонентов систем
предметных областих.	искусственного интеллекта
	ПК-2.1. Умеет выбирать, адаптировать, разрабатывать
	и интегрировать программные компоненты систем
	искусственного интеллекта с учетом основных
	критериев эффективности и качества функционирования
ПК-2.2. Модернизирует программное и	
аппаратное обеспечение технологий и	
систем искусственного интеллекта для	модернизации программного и аппаратного обеспечения, проведения и анализа тестовых и
решения профессиональных задач с	экспериментальных испытаний работоспособности
учетом требований информационной	
безопасности в различных предметных	систем искусственного интеллекта;
областях.	ПК 2.1. Знает требования информационной
	безопасности в различных предметных областях
	ПК-2.2. Умеет ставить задачи и проводить тестовые и
	экспериментальные испытания работоспособности
	систем искусственного интеллекта анализировать результаты и вносить изменения
ПК-3.1. Ставит задачи по разработке	ПК-3.1. Знает классы методов и алгоритмов машинного
или совершенствованию методов и	обучения
алгоритмов для решения комплекса	ПК-3.1. Умеет ставить задачи и разрабатывать новые
задач предметной области	методы и алгоритмы машинного обучения
ПК-5.1. Руководит разработкой	ПК-5.1. Знает возможности современных
архитектуры комплексных систем	инструментальных средств и систем программирования
	A 17

искусственного интеллекта	для решения задач машинного обучения ПК-5.1. Умеет проводить сравнительный анализ и осуществлять выбор инструментальных средств для решения задач машинного обучения
ПК-5.1. Выбирает и разрабатывает программные компоненты систем искусственного интеллекта.	ПК-6.1. Знает функциональность современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей ПК-6.1. Умеет проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения ПК-6.1. Умеет применять современные инструментальные средства и системы программирования для разработки и обучения моделей искусственных нейронных сетей

Матрица компетентностных задач по дисциплине

Контролируемые блоки (темы)	Контролируемые	Оценочные средства
дисциплины	компетенции (или их	-
	части)	
Тема 1. Базовые понятия	ПК-1.1; ПК-1.2;	Практические задания
искусственного интеллекта.	ПК-1.3; ПК-2.1;	Вопросы для
Философские аспекты	ПК-2.2; ПК-3.1;	самостоятельного контроля
проблемы систем искусственного	ПК-5.1; ПК-6.1	знаний студентов
интеллекта (СИИ) (возможность		Вопросы и задания для
существования, безопасность,		домашней работы
полезность). История развития		
систем ИИ.		
Тема 2.Знания и их	ПК-1.1; ПК-1.2;	Практические задания
классификация. Модели и	ПК-1.3; ПК-2.1;	Вопросы для
формы знаний	ПК-2.2; ПК-3.1;	самостоятельного контроля
	ПК-5.1; ПК-6.1	знаний студентов
		Вопросы и задания для
		домашней работы
Тема 3.Современные архитектуры	ПК-1.1; ПК-1.2;	Практические задания
нейронных сетей. Научные и	ПК-1.3; ПК-2.1;	Вопросы для
промышленные приложения	ПК-2.2; ПК-3.1;	самостоятельного контроля
	ПК-5.1; ПК-6.1	знаний студентов
		Вопросы и задания для
		домашней работы
Тема 4. Иерархическая	ПК-1.1; ПК-1.2;	Практические задания
организация нейросетевых	ПК-1.3; ПК-2.1;	Вопросы для
архитектур. Многослойный	ПК-2.2; ПК-3.1;	самостоятельного контроля
перцептрон, сети обратного и	ПК-5.1; ПК-6.1	знаний студентов
встречного распространения		Вопросы и задания для
ошибки, карта		домашней работы
Кохоннена, модель Липмана		
Хемминга.		
Тема 5. Методы и алгоритмы	ПК-1.1; ПК-1.2;	Практические задания
анализа	ПК-1.3; ПК-2.1;	Вопросы для
структуры многомерных данных	ПК-2.2; ПК-3.1;	самостоятельного контроля

Эволюционные методы	ПК-5.1; ПК-6.1	знаний студентов
построения		Вопросы и задания для
СИИ		домашней работы

Оценочные средства Текущий контроль

Целью текущего контроля знаний является установление подробной, реальной картины студенческих достижений и успешности усвоения ими учебной программы на данный момент времени. В условиях рейтинговой системы контроля результаты текущего оценивания студента используются как показатель его текущего рейтинга.

Текущий контроль успеваемости осуществляется в течение семестра, в ходе повседневной учебной работы по индивидуальной инициативе преподавателя. Данный вид контроля стимулирует у студентов стремление к систематической самостоятельной работе по изучению дисциплины.

Описание видов практических занятий, предусмотренных РПД Выполнение практических заданий

Практические задания выдаются студентам с целью применения полученных знаний на практике под руководством преподавателя. Практические задания могут быть представлены в виде решения задач, проблемных заданий, тренингов и иных видах, направленных на получение практических знаний

Описание видов самостоятельной работы, предусмотренных РПД Подготовка к аудиторным занятиям

Подготовка к аудиторным занятиям состоит из изучения материала по соответствующей теме и ответов на вопросы для самоконтроля. Проверка уровня подготовки студентов к занятиям может проводится устным опросом, тестом, контрольной работой или иными видами текущего контроля.

Выполнение домашнего задания

Домашнее задание, как правило состоит из нескольких вопросов и заданий. Домашняя контрольная работа выполняется студентом самостоятельно не во время аудиторных занятий и имеет своей целью проверить текущий уровень формирования компетенций

Задания для текущего контроля

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Оценка знаний, умений и навыков в процессе изучения дисциплины производится с использованием фонда оценочных средств.

5.1.Типовой вариант задания на контрольную работу

- 1 Выстроите правильную последовательность общей схемы обучения персептрона
- а. Инициализировать веса и параметры функции активации в малые ненулевые значения;
- Б. Подать на вход один образ и рассчитать выход;
- с. Посчитать ошибку Es, сравнив ds и уs.

- d. Изменить веса и параметры функции активации так, чтобы ошибка Es уменьшилась.
- е. Повторить шаг 2, до тех пор, пока ошибка не перестанет убывать или не станет достаточно малой.

5.2.Типовой тест промежуточной аттестации

1. Закономерности, установленные в результате практической деятельности и накапливанияпрофессионального опыта в некоторой проблемной области и позволяющие специалистам

ставить и решать задачи в этой области, - это ...

- а) данные
- б) знания
- в) информация
- г) коэффициенты
- Данные это ...
- а) факты, отражающие объекты, процессы и явления предметной области
- б) закономерности, установленные в результате практической деятельности и накапливания

профессионального опыта в некоторой проблемной области и позволяющие специалистам ставить и решать задачи в этой области

- в) сведения, рассматриваемые в каком-либо контексте и позволяющие которого пользователю составить собственное мнение
- г) числа
- 3. Информация это ...
- а) факты, характеризующие объекты, процессы и явления предметной области, а также их свойства
- б) наборы символов
- в) закономерности, установленные в результате практической деятельности и накапливания

профессионального опыта в некоторой проблемной области и позволяющие специалистам ставить и решать задачи в этой области

- г) сведения, рассматриваемые в каком-либо контексте, который имеет значение для пользователя
- 4. Знания это ...
- а) факты, характеризующие объекты, процессы и явления предметной области, а также их свойства
- б) *закономерности, установленные в результате практической деятельности и накапливания

профессионального опыта в некоторой проблемной области и позволяющие специалистам ставить и решать задачи в этой области

- в) сведения, рассматриваемые в каком-либо контексте и позволяющие которого пользователю составить собственное мнение
- 5. Установите соответствие ...
- a) Знания это ... (b)
- б) Данные это ... (а)
- в) Информация это ... (с)

Варианты ...

а) Данные – это записанные на каком-либо носителе факты

- б) Знания это понятые субъектом факты и их зависимости, запоминаемые для последующего применения
- в) Информация это новые и полезные для решения задач факты
- 6. Данные соответствуют ... аспекту отражения действительности
- а) прагматическому
- б) синтаксическому
- в) семантическому
- 7. Информация соответствует ... аспекту отражения действительности
- а) синтаксическому
- б) семантическому
- в) прагматическому

5.3. Типовые задания для самостоятельной работы

- 1. Составьте логическую модель представления знаний для следующего условия задачи: Требуется определить стратегию производства некоторого товара в зависимости от этапа жизненного цикла и возможностей предприятия. Этапы жизненного цикла характеризуютсятемпом роста сбыта, числом потребителей, долей занятого рынка, числом конкурентов, прибыльностью. Возможности предприятия определяются производственным, научно-техническим, финансовым, маркетинговым потенциалом, конкурентоспособностью продукции.
- 2. Составьте продукционную модель представления знаний для следующего условия задачи:

Требуется определить кредитоспособность предприятия, предоставляющее техникоэкономическое обоснование проекта, в котором указывается цель, ожидаемая эффективность(коэффициент и срок окупаемости), ресурсное обеспечение. Предприятие также предоставляетфинансовые документы: баланс и отчет о доходах, на основе которого делается заключение офинансовом положении. Возможно также предоставление гарантийных поручительств и другихдокументов.

6.МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ.

- 6.1.Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписания занятий или в установленное деканатом время.
- 6.2.Студент информируется о результатах текущей успеваемости.
- 6.3. Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
- 6.4. Производится идентификация личности студента.
- 6.5.Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
- 6.6. Тест закрывается студентом лично по завершении тестирования или автоматически по истечении времени тестирования.