Документ подписан простой электронной подписью

Информация о владельце:

Министерство науки и высшего образования РФ

ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор Дата подписания: **Федеральное государственное бюджетное образовательное учреждение** высшего образования Уникальный программный ключ:

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926

«Дагестанский государственный технический университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина _	Геплотех	ника			
	(наименовал	ние дисципли	ины по ОПОП))	
для направления	(специальности)	19.03.04	«Технология	продукции	И
организация об	щественного питания (код и полное наименование нап	равления (специаль	ьности))		
• • •	ециализации, программе)	«Те	хнология	и организа	ация
ресторанного серг	виса»		-		
	8	`			
факультет		Технолог			
	(наименование	факультета, где вед	цется дисциплина)		
кафедра	Теоретической и (наименование кафедры, за	общей элект	ротехники		<u>.</u>
	(наименование кафедры, за	которои закреплена	т дисциплина)		
Форма обучения _	ОЧНАЯ, ОЧНО-ЗАОЧНАЯ, ЗАО (очная, очно-заочная, заочная)	учная ,	cypc <u>3</u>	семестр (ы)5_	<u>.</u>

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению подготовки (специальности) 19.03.04 «Технология продукции и организация общественного питания», с учетом рекомендаций и ОПОП ВО по направлению «Технология продукции и организация общественного питания» и профилю подготовки «Технология и организация ресторанного сервиса».

Разработчик	Magap	Хазамова М.А., к.т.н., доцент	
« <u>17</u> » <u>05</u> 20 <u>21</u> г.	(подпись)	(ФИО, уч. степень, уч. звание)	
/			4
Зав. кафедрой ТиОЭ	Magas	Исмаилов Т.А., д.т.н., профессор	
«17» 05 202/r.	(подпись) /		
Программа одобрена на з протокол № <u>9</u> .	аседании выпускаю	ощей кафедры ТППОПиТ от <u>19.05</u>	года,
Зав. выпускающей кафедрой ТППОПиТ	(подпусу)	Демирова А.Ф., д.т.н., доцент	
« <u>19</u> » <u>05</u> 20 <u>11</u> г.			
	организация общест	Методической комиссии направления гвенного питания» Технологического фа	
1			
Председатель Методической комиссии факультета «ДО_» _052024 г.	ARuel (подпись)	Ибращевва ЛР (ФИО, уч. степень, уч. звание)	
Декан факультета	(подпись)	Абдулхаликов З.А., к.т.н.	
Начальник УО	(подпись)	Магомаева Э.В.	
И.о. проректора по	andree!	Баламирзоев Н.Л., к.э.н., доцент	

учебной работе

1. Цели и задачи освоения дисциплины.

Целью освоения дисциплины «Теплотехника» является приобретение знаний, теоретическая и практическая подготовка будущих бакалавров по методам получения, преобразования, передачи и использования тепловой энергии в такой степени, чтобы они могли выбирать и при необходимости эксплуатировать теплотехническое оборудование в индустрии питания.

Задача изучения дисциплины: сформировать у студентов четкие представления о закономерностях распространения теплоты в различных средах, подготовить бакалавров к усвоению основных положений теории тепломассообмена, необходимых для изучения последующих специальных дисциплин,

2.Место дисциплины в структуре ОПОП

Дисциплина «Теплотехника» относится к обязательной части учебного плана и непосредственно связана с дисциплинами «Физика», «Математика», «Химия»

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

Код компетенции	Наименование компетенции	Наименование показателя оценивания (показатели достижения заданного уровня освоения компетенций)
3	Способен использовать знания инженерных процессов при решении профессиональных задач в эксплуатации современного технологического оборудования и приборов	ОПК -3.1. Применяет знания инженерных наук в области в области эксплуатации современного технологического оборудования, приборов и механизмов, используемых в индустрии питания ОПК- 3.2. Использует знания инженерных наук при проектировании и техническом оснащении предприятий индустрии питания

4. Объем и содержание дисциплины (модуля)

Форма обучения	очная	заочная	очно-заочная
Общая трудоемкость по дисциплине (ЗЕТ/ в часах)	2/72	2/72	2/72
Лекции, час	17	4	9
Практические занятия, час	17	4	9
Лабораторные занятия, час	-	-	-
Самостоятельная работа, час	38	60	54
Курсовой проект (работа), РГР, семестр	-	-	
Зачет (при заочной форме 4 часа отводится на	Зачет	4 ч —	Зачет
контроль)		контроль	4
Часы на экзамен (при очной, очно-заочной формах 1	-	-	-
ЗЕТ – 36 часов, при заочной форме 9 часов -		\$"	
контроль)			

4.1. Содержание дисциплины (модуля)

т/1	4.1. Содержание дисципли			форм	a	3a	аочная	і форм	ма	Очн	о-заоч	ная фо	рма
№ п/п	Раздел дисциплины, тема лекции и вопросы (5 семестр)	ЛК	ПЗ	ЛБ	CP	ЛК	ПЗ	ЛБ	CP	ЛК	П3	ЛБ	CP
1	 Лекция № 1. Тема «Теплотехника как теоретическая основа энергетики. Основные понятия» 1. Предмет теплотехники и ее задачи 2. Основные понятия и определения термодинамики. 3. Газовые смеси. 4. Теплоемкость и ее виды. 	2	4	-	5				,	-41	91		
2	Лекция № 2. Тема: «Законы термодинамики» Принцип однозначности внутренней энергии как основа первого законе термодинамики. Основные формулировки и аналитическое выражение 1-го закона термодинамики. Энтальпия. Математическое выражение и основные формулировки 2-го закона термодинамики. Энтропия. Цикл Карно. Общие вопросы исследования термодинамических процессов рабочих тел.	2	2	-	5	1	1		15	2	2	-	13
3	Лекция № 3. Тема: «Термодинамические процессы в реальных глазах и парах» Водяной пар и его роль в теплотехнике. Основные понятия и определения процессов парообразования Процессы парообразования в PV- и ТS-диаграммах. Таблицы водяного пара. Влажный воздух и его основные характеристики. Іd-диаграмма влажного воздуха.	2	2	,	4	1	1	20	15	2	2		13
4	Лекция № 4. Тема: «Дросселирование газов и паров. Термодинамический анализ процессов в компрессорах» Уравнение первого закона термодинамики для потока газа. Сущность процесса дросселирования. Эффект Джоуля-Томсона. Классификация, устройство и принцип работы компрессоровИндикаторная диаграмма компрессора. Многоступенчатое сжатие.	2	2		4						_		b
5	Лекция № 5. Тема: «Термодинамические основы искусственного охлаждения»	2	2	-	4	1	1	-	15	2	2	-	13

Форма промежуточной аттестации (5 семестр) Итого (5 семестр)	17	3a 17	чет -	38	3a46	$\frac{\text{eT}-4}{4}$	часа і	конт. 60	9	3a	чет -	54
	№3		тема	нная	P.							
***	1-3 тема Контрольная №2 аттестационная 4-6 тема					1Я	Входная контрольная работа; Контрольная работа					
• • • • • • • • • • • • • • • • • • •		контрольная работа контрольная №1 аттестационная работа;										
Формы текущего контроля успеваемости (5 семестр)		Bxo	л дная	ı		Bxo	дная		Bxo	дная к	онтрол	ьная
 Теплоотдача при конденсации. Расчетные зависимости для определения коэффициента теплоотдачи. 							a			- 10		
 9 Лекция № 9. Тема: «Теплоотдача при фазовых превращениях» 1. Теплоотдача при кипении. Режимы кипения. 	1	-	-	4								
 Понятие о пограничном слое. Дифуравнения конвективного теплообмена. 									1			
1. Общие понятия и определения: виды конвекции, режимы течения. Уравнение Ньютона-Рихмана.					1	1	-	15	3	3	_	15
4. Регулярный тепловой режим.8 Лекция № 8. Тема: «Конвективный теплообмен»	2	1	-	4								
 Теплопроводность плоской, цилиндрической и шаровой стенок. Теплопередача. Уравнение теплопередачи. Методы решения вадач нестационарной теплопроводности. 												
7 Лекция № 7. Тема: «Теплопроводность при стационарном и нестационарном режимах»	2	2	-	4							:	
Коэффициент теплопроводности и его физический смысл. 3. Дифференциальное уравнение теплопроводности. Условия однозначности для процессов теплопроводности.									,			
 Лекция № 6. Тема: «Основы теории тепло- и массообмена» Виды переноса теплоты. Механизм переноса тепла в различных телах. Температурное поле. Градиент температуры. Закон Фурье. 	2	2	-	4					14		*	
 Физические основы получения низких температур. Рабочие вещества холодильных машин (хладагенты) Циклы воздушной, паровой компрессорной и абсорбционной холодильных установок. 									q			

25/0

1.2. Содержание практических занятий

п/п				нество		Рекомендуемая литература и методические разработки (№		
No.	программы		Очно	Заочно	Очно- заочно	источника из списка литературы)		
1	2	3	4	5	6	7		
1	N º1	Параметры состояния. Расчет параметров состояния рабочего тела. Уравнение состояния.	2					1,2,3,6
2	№ 1	Газовые смеси. Соотношения между массовыми и объемными долями	2	1	2	1,2,3,6		
3	№ 2	Законы термодинамики. Термодинамические процессы в идеальных газах.		1	2	1,2,3,4,6		
4	№3	Расчет параметров водяного пара с помощью таблиц и диаграмм.	2	1		1,2,3,6		
5	№ 4	Определение полной работы, затрачиваемой на привод компрессора.	2	1	2	1,2,4,6		
6	№5	Циклические процессы холодильных установок. Расчет параметров цикла.	2			1,2,4,6		
7	№6	Способы распространения теплоты. Теплопроводность.	2			1,5,6		
8	№7 Теплопередача. Определение коэффициента теплопередачи		2	1	2	1,5,6		
9	№8	Конвективный теплообмен. Критерий Рейнольдса.	1	7	1	1,5,6		
	1	Итого за 5 семестр	17	4	9	1,5,6		

1.3. Тематика для самостоятельной работы студента

F	11	Тематика по содержанию дисциплины,	Кол	ичество ч	асов	Рекомендуемая литература и источники	Форма контроля
No 11/11	717 ZMC	выделенная для самостоятельного изучения (5 семестр)	Очно	Заочно	Очно- заочно	информации	CPC
1	L	3	4	5		6	
1	1	Основные понятия и определения термодинамики. Предмет и задачи дисциплины. Термодинамическая система. Параметры состояния и единицы их измерения. Идеальный газ, уравнение состояния идеального газа. Газовая постоянная и ее физический смысл. Теплоёмкость рабочего тела. Смеси рабочих тел, способы задания, определение гаророй постоянная и монятьюй массы смеси	5			1,2,3,4,5,6	КР, ПЗ
2	2	зовой постоянной и молярной массы смеси. Эквивалентность теплоты и работы. Сущность и уравнение первого закона термодинамики. Политропные процессы, их исследование и графическое изображение на диаграммах. Частные случаи политропного процесса: изохорный, изобарный, изотермический и адиабатный процессы. Сущность второго закона термодинамики и его различные формулировки (Клаузиуса, Томсона, Больцмана, Стерлинга). Цикл Карно, интеграл Клаузиуса. Энтропия, ее физический смысл, изменение в процессах. Изменение энтропии в термодинамических процессах.	5	15	13	1,2,3,4,5,6	КР, ПЗ
	3	Водяной пар и его роль в теплотехнике. Основные понятия и определения. Процессы парообразования в PV- и TS-диаграммах. Термодинамические таблицы и диаграммы водяного пара. Із-диаграмма водяного пара. Влажный воздух и его основные	4	15	13	1,2,3,4,5,6	КР, ПЗ

	характеристики. Id-диаграмма влажного воздуха.							4
4	Термодинамика потока. Термодинамика газовых потоков. Фазовые переходы в термодинамических системах. Основные уравнения термодинамики газового потока. Располагаемая работа потока. Адиабатное истечение, критическая скорость и максимальный расход идеального газа. Уравнение первого закона термодинамики для потока газа. Сущность процесса дросселирования. Эффект Джоуля-Томсона. Классификация, устройство и принцип работы	4				1,2,3,4,5,6		КР, ПЗ
	компрессоров. Индикаторная диаграмма компрессора. Многоступенчатое сжатие.							
5	Физические основы получения низких температур. Рабочие вещества холодильных машин (хладагенты). Циклы воздушной, паровой компрессорной и абсорбционной холодильных установок.	4				1,2,3,4,5,6		КР, ПЗ
	Способы распространения теплоты: теплопроводность, конвекция, излучение, их сравнительный анализ. Механизмы передачи теплоты в различных телах. теплопроводность. Интенсификация процессов	42	15	13				
6	теплообмена. Тепловой поток, плотность теплового потока. Температурное поле, температурный градиент. Закон Фурье. Дифференциальное	4				1,2,3,4,5,6		кР, ПЗ
	Уравнение теплопроводности. Условия однозначности: геометрические, теплофизические, краевые. Тепловые граничные условия.		1		* _	4	4.	

*

7	Теплопроводность и теплопередача при стационарном режиме Теплопроводность плоской, цилиндрической и шаровой стенок. Уравнение теплопередачи. Методы решения задач нестационарной теплопроводности. Основы численных методов расчета температурных полей (метод конечных разностей). Регулярный тепловой режим. Тепловая изоляция. Теплопроводность при нестационарном режиме.	4			1,2,3,4,5,6	КР, ПЗ
8	Конвективный теплообмен. Общие понятия и определения: свободная и вынужденная конвекция, ламинарный и турбулентный режимы течения. Уравнение Ньютона-Рихмана. Теория пограничного слоя Л.Прандтля. Дифференциальные уравнения конвективного теплообмена.	4	15	15	1,2,3,4,5,6	КР, ПЗ
9	Теплоотдача при фазовых превращениях. Теплоотдача при кипении. Режимы кипения. Теплоотдача при конденсации. Коэффициент теплоотдачи и его физический смысл. Расчетные зависимости для определения коэффициента теплоотдачи.	4	,		1,2,3,4,5,6	КР
	Итого за 5 семестр	38	60	54		

5. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, деловых и ролевых игр, разбор конкретных ситуаций, психологические и иные тренинги) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся, а именно классический метод изложения материала (студент конспектирует читаемый лекционный материал, а также воспроизводит схемы и рисунки, предоставляемые лектором, представленные лектором, в процессе изложения лекционного материала лектор отвечает на вопросы студентов, излагая отдельные моменты более подробно); лекции с использованием мультимедийного оборудования, технологий и сетей; самостоятельное изучение теоретического материала с использованием Іnternet-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Фонд оценочных средств является обязательным разделом РПД (разрабатывается как приложение к рабочей программе дисциплины).

Оценочные средства приведены в ФОС (Приложение А).

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

№ п/п	Необходимая учебная, учебно- методическая (основная и дополнительная) литература, программное обеспечение и Интернет ресурсы	Автор(ы)	Издательство и год издания	Количество изданий
	N	ОСНОВН		
1	Техническая термодинамика и теплопередача	Нащокин В.В.	M: A3-book, 2009	35
2	Техническая теплотехника: учебное пособие	Малая Э.М.	Саратов: Саратовский государственный технический университет имени Ю.А. Гагарина, ЭБС АСВ, 2014. — 90 с. — ISBN 978-5-7433-2749-2	IPR BOOKS http://www.iprbookshop.ru/80120 _html
		дополните		
3	Теоретические основы термодинамики и теплопередачи [Электронный ресурс]: учебное пособие	Ларионов А.Н., Кураков Ю.И., Воищев В. С.	Воронеж: Воронежский Государственны й Аграрный Университет им. Императора Петра Первого, 2015	IPR BOOKS http://www.iprbookshop.ru/72761 _html
4.	Теоретические основы теплотехники (техническая термодинамика и тепломассообмен) Теплофизика и теплотехника	Стоянов Н.И. Сборщиков Г. С.,	Ставрополь: Северо- Кавказский федеральный университет, 2014.	IPR BOOKS http://www.iprbookshop.ru/63139. html IPR BOOKS
	ISBN 2227-8397. — Текст: электронный //	Чибизова С. И	Издательский Дом МИСиС, 2012. — 104 с. Г. С.	Электронно-библиотечная система: — URL;http://www.iprbookshop.ru/ 56201.html
	Техническая термодинамика и теплотехника: сборник задач ISBN 978-5-89070-792-5. — Текст: электронный /	Афанасьев, Ю. О.	Кемерово: КузГТУ имени Т.Ф. Горбачева, 2011. — 96 с.	IPR ЛАНЬ : электронно-библиотечная система. — URL: https://e.lanbook.com/book/6633

8. Материально-техническое обеспечения дисциплины «Теплотехника»

Лекционные и практические занятия по дисциплине проводятся в аудитории с презентационной техникой и учебной мебелью (столы, стулья), а также плакаты, схемы, таблицы, необходимые для изучения данной дисциплины.

9. Специальные условия инвалидам и лицам с ограниченными возможностями здоровья (ОВЗ)

Специальные условия обучения и направления работы с инвалидами и лицами с ОВЗ определены на основании:

- Федерального закона от 29.12.2012 №273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 24.11.1995 № 181-ФЗ «О социальной защите инвалидов в Российской Федерации»;
- приказа Минобрнауки России от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- методических рекомендаций по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса, утвержденных Минобрнауки России 08.04.2014 № АК-44/05вн).

Под специальными условиями для получения образования обучающихся с OB3 понимаются условия обучения, воспитания и развития, включающие в себя использование при необходимости адаптированных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего необходимую помощь, проведение групповых и индивидуальных коррекционных занятий, обеспечение доступа в здания ДГТУ и другие условия, без которых невозможно или затруднено освоение ОПОП обучающихся с ОВЗ.

Обучение в рамках учебной дисциплины обучающихся с ОВЗ осуществляется ДГТУ с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Обучение по учебной дисциплине обучающихся с ОВЗ может быть организовано как совместно с другими обучающимися, так и в отдельных группах.

В целях доступности обучения по дисциплине обеспечивается:

- 1) для лиц с ограниченными возможностями здоровья по зрению:
- наличие альтернативной версии официального сайта ДГТУ в сети «Интернет» для слабовидящих;
- весь необходимый для изучения материал, согласно учебному плану (в том числе, для обучающихся по индивидуальным учебным планам) предоставляется в электронном виде на диске.
 - индивидуальное равномерное освещение не менее 300 люкс;
 - присутствие ассистента, оказывающего обучающемуся необходимую помощь;
- обеспечение возможности выпуска альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы);
- обеспечение доступа обучающегося, являющегося слепым и использующего собакупроводника, к зданию ДГТУ.
 - 2) для лиц с ОВЗ по слуху:
- наличие микрофонов и звукоусиливающей аппаратуры коллективного пользования (аудиоколонки);
- 3) для лиц с OB3, имеющих нарушения опорно-двигательного аппарата, материальнотехнические условия должны обеспечивать возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях (наличие пандусов, поручней, расширенных дверных проемов и других приспособлений).

Перед началом обучения могут проводиться консультативные занятия, позволяющие студентам с OB3 адаптироваться к учебному процессу.

В процессе ведения учебной дисциплины научно-педагогическим работникам рекомендуется использование социально-активных и рефлексивных методов обучения, технологий социокультурной реабилитации с целью оказания помощи обучающимся с ОВЗ в

установлении полноценных межличностных отношений с другими обучающимися, создании комфортного психологического климата в учебной группе.

Особенности проведения текущей и промежуточной аттестации по дисциплине для обучающихся с ОВЗ устанавливаются с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и др.). При необходимости предоставляется дополнительное время для подготовки ответа на зачете или экзамене