Документ подписан простой электронной подписью

информация о владельце: **Министе рство науки и высшего образования РФ** ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор

дата подписани редеральное государственное бюджетное образовательное учреждение Уникальный программный ключ: высшего образования

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926

«Дагестанский государственный технический университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина	<u>Теоретическая механика</u>
	наименование дисциплины по ОПОП
лпя направления (07.03.01 – «Архитектура»
дин паправични <u>ч</u>	код и полное наименование направления (специальности)
по профильо "Апу	итектурное проектирование»
по профилю «Арх	, mrektyphoe npoektupobanne//
факультет	<u>Архитектурно-строительный</u>
	наименование факультета, где ведется дисциплина
кафелра Сопроти	вления материалов, теоретической и строительной
механики	
	наименование кафедры, за которой закреплена дисциплина
Форма обучения _	очная , курс 1 семестр (ы) 2 .
очная, очно-заочная, за	

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки **07.03.01 – «Архитектура»** с учетом рекомендаций и ОПОП ВО по направлению и профилю подготовки **«Архитектурное проектирование»**

	Разработчик Пайзулаев М.М., к.т.н., доцент
	« <u>/b</u> » <u>09</u> 2019 г.
	Зав. кафедрой, за которой закреплена дисциплина (модуль) Пайзулаев М.М., к.т.н., доцент
	« <u>16</u> » <u>09</u> 2019 г.
26.	Программа одобрена на заседании выпускающей кафедры «Архитектура» от 0.9 года, протокол № 9 .
	Зав. выпускающей кафедрой по данному направлению (специальности, профилю) Абакаров А.Д. д.т.н., профессор
	« <u>26</u> » <u>0</u> 4 2019 г.
факул	Программа одобрена на заседании Методического совета архитектурно-строительного тьтета от <u>15, 05,19</u> года, протокол № <u>9</u> .
	Председатель Методической комиссии факультета Омаров А.О., к.э.н., доцент
٠	«15_»
Дека	н факультетаХаджишалапов Г.Н.
Нача	альник УО Магомаева Э.В.
И.о.	начальника УМУ Бесере Гусейнов М.Р.

1. Цели и задачи освоения дисциплины.

Целями освоения дисциплины «Теоретическая механика» является: общетехническая подготовка студентов, формирование знаний и умений будущего бакалавра, овладевшим техническими дисциплинами в системе политехнического обучения.

Задачами освоения дисциплины являются:

- повышение образовательного уровня студентов, заключающееся в развитии их знаний и представлений в области механического взаимодействия, равновесия и движения материальных тел, на базе которых строится большинство специальных дисциплин инженернотехнического образования;
- овладение основными алгоритмами построения и исследования механико-математических моделей для развития у будущих специалистов склонности и способности к творческому мышлению, выработке системного подхода к исследуемым явлениям, умения самостоятельно строить и анализировать математические модели различных механических систем, адекватно описывающих разнообразные механические явления и использовать методы теоретической механики для исследования движения и равновесия этих систем;
- приобретение необходимых компетенций, позволяющих успешно решать разнообразные научно-технические задачи в теоретических и прикладных аспектах, самостоятельно используя современные образовательные и информационные технологии овладевать той новой информацией, с которой будущим специалистам придётся столкнуться в производственной и научной деятельности, в том числе связанные с созданием новой техники и технологий

2.Место дисциплины в структуре ОПОП

Дисциплина «Теоретическая механика» является обязательной дисциплиной учебного плана в подготовке профессионального высшего образования по основной образовательной программе 07.03.01 «Архитектура». Дисциплина «Теоретическая механика» требует знания и умений приобретенных в результате освоения предыдущих дисциплин «Высшая математика», «Начертательная геометрия и инженерная графика», «Физика». Дисциплина необходима для изучения курсов: «Строительная механика» и др..

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

В результате освоения дисциплины «<u>Теоретическая механика»</u> студент должен овладеть следующими компетенциями

Код	Наименование компетенции	Наименование показателя
компетенции		оценивания (показатели достижения
		заданного уровня освоения
		компетенций)

X/IC 1	C	VIC 1 1 V
УК-1.	Способен осуществлять поиск,	УК-1.1. Умеет: участвовать в
	критический анализ и синтез	проведении предпроектных
	информации, применять	исследований, включая исторические,
	системный подход для решения	культурологические и
	поставленных задач	социологические; использовать
		средства и методы работы с
		библиографическими и
		иконографическими источниками;
		оформлять результаты работ по сбору,
		обработке и анализу данных, в том
		числе с использованием средств
		автоматизации и компьютерного
		моделирования
		УК-1.2. Знает: основные источники
		получения информации, включая
		нормативные, методические,
		справочные и реферативные
		источники; виды и методы проведения
		· ·
		предпроектных исследований, включая
		исторические и культурологические;
		средства и методы работы с
		библиографическими и
		иконографическими источниками

4. Объем и содержание дисциплины (модуля)

_	· • /	
Форма обучения	очная	
Общая трудоемкость по дисциплине (ЗЕТ/ в	2 ЗЕТ- 72 ч.	
часах)		
Семестр	2	
Лекции, час	17	
Практические занятия, час	17	
Лабораторные занятия, час	-	
Самостоятельная работа, час	2	
Курсовой проект (работа), РГР, семестр	РГР, 2 семестр	
Зачет (при заочной форме 4 часа отводится на	-	
контроль)		
Часы на экзамен (при очной, очно-заочной	2 семестр - экзамен	
формах 1 ЗЕТ – 36 часов, при заочной форме 9	(1 ЗЕТ - 36 час)	
часов отводится на контроль)		

4.1. Содержание дисциплины (модуля)

No			Очная форма			
п/ п	Раздел дисциплины, тема лекции и вопросы	лк	П3	ЛБ	СРС	
1	2	3	4	5	6	
	Лекция 1	2	2	-		
1	Тема: «Введение. Система сходящихся сил». Предмет теоретическая механика. Основные понятия и определения статики. Аксиомы статики и их следствия. Связи, их основные виды. Геометрическое и аналитическое условия равновесия системы					
	Лекция 2.	2	2	_		
2	Тема: «Момент силы как вектор». «Теория пар сил». Момент силы относительно центра. Момент силы относительно оси. Теорема Вариньона о моменте равнодействующей. Пара сил. Момент пары как вектор. Теоремы об эквивалентности пар и их следствия	2	٢			
3	Лекция 3. Тема: «Центр параллельных сил. Центр тяжести». Сложение параллельных сил, центр параллельных сил. Радиус вектор и координаты центра параллельных сил. Центр тяжести. Вычисление центра тяжести тел простейших форм. Способы определения положения центра тяжести тел. сил к заданному центру.	2	2	-	1	
4.	Лекция 4. Тема: «Кинематика точки». Введение в кинематику. Основные понятия и определения кинематики. Способы задания движения точки. Вектор скорости и вектор ускорения, их величина и направление. Направляющие косинусы. Нормальное и касательное ускорения.	2	2	-		
	Лекция 5.	2	2	_	1	
5.	Тема: «Плоскопараллельное движение твердого тела» Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Леммы Даламбера. Уравнения плоского движения. Аналитическое определение скорости и ускорения точки фигуры при ее плоском движении.					
	Лекция 6.	2	2	-		
6.	Тема: «Динамика материальной точки» Основные понятия и определения: масса, материальная точка, постоянные и переменные силы. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки. Решение прямой и обратной задач динамики материальной точки.					

	Лекция 7	2	2	-		
	Тема: «Общие теоремы динамики материальной точки».					
	Количество движения материальной точки. Элементарный					
	импульс и импульс силы за конечный промежуток времени.					
7.	Теорема об изменении количества движения точки в					
	дифференциальной и конечной формах. Момент количества					
	движения материальной точки относительно центра и оси.					
	Потенциальная энергия. Закон сохранения полной					
	механической энергии материальной точки.					
	Лекция 8.	2	2	-		
	Тема: «Динамика твердого тела».					
8.	Дифференциальные уравнения поступательного движения					
0.	твердого тела. Дифференциальное уравнение вращательного					
	движения. Дифференциальные уравнения плоского движения.					
	Элементарная теория Гироскопа.					
	Лекция 9.	1	1	-		
	Тема: «Принцип Даламбера для материальной точки и					
	механической системы материальных точек».					
9.	Принцип Даламбера для материальной точки и системы.					
	Главный вектор, главный момент сил инерции и методы их					
	вычисления в частных случаях движения твердого тела.					
	Понятие о статической и динамической балансировках.					
	Принцип Даламбера-Лагранжа. Общее уравнение динамики					
				Входная конт.работа		
	Форма текущего контроля успеваемости (по			1 аттестация 1-3 тема		
	срокам текущих аттестаций в семестре)		2 аттестация 4-6 тема			
			3 аттестация 7-8 тема			
	ф —		Экзамен (13ЕТ - 36			
	Форма промежуточной аттестации (по семестрам)			час)		
	Итого	17	17	-	2	

4.2. 1. Содержание практических занятий (2 семестр)

Таблица 4.2.

	No	Nº		Рекомендуе-
	лекции		Количество	мая литера-
No	ИЗ			тура и мето-
п/	рабочей	Наименование практического занятия		дические
П	про- грамм		Очно	разработки
	Б			
	Di			
1	2	3	4	5
1	1	Тема: «Введение. Система сходящихся сил».	2	[1 -14]
		Предмет теоретическая механика. Основные		
		понятия и определения статики. Аксиомы		
		статики и их следствия. Связи, их основные		
<u> </u>				

		виды. Геометрическое и аналитическое условия равновесия системы.		
2	2	Тема: «Момент силы как вектор». «Теория пар сил». Момент силы относительно центра. Момент силы относительно оси. Теорема Вариньона о моменте равнодействующей. Пара сил. Момент пары как вектор. Теоремы об эквивалентности пар и их следствия.	2	[1 -14]
3	3	Тема: «Центр параллельных сил. Центр тяжести». Сложение параллельных сил, центр параллельных сил. Радиус вектор и координаты центра параллельных сил. Центр тяжести. Вычисление центра тяжести тел простейших форм. Способы определения положения центра тяжести тел. сил к заданному центру.	2	[1 -14]
4	4	Тема: «Кинематика точки». Введение в кинематику. Основные понятия и определения кинематики. Способы задания движения точки. Вектор скорости и вектор ускорения, их величина и направление. Направляющие косинусы. Нормальное и касательное ускорения.	2	[1 -14]
5	5	Тема: «Плоскопараллельное движение твердого тела» Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Леммы Даламбера. Уравнения плоского движения. Аналитическое определение скорости и ускорения точки фигуры при ее плоском движении.	2	[1 -14]
6	6	Тема: «Динамика материальной точки» Основные понятия и определения: масса, материальная точка, постоянные и переменные силы. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки. Решение прямой и обратной задач динамики материальной точки.	2	[1 -14]

7	7	Тема: «Общие теоремы динамики материальной точки». Количество движения материальной точки. Элементарный импульс и импульс силы за конечный промежуток времени. Теорема об изменении количества движения точки в дифференциальной и конечной формах. Момент количества движения материальной точки относительно центра и оси. Потенциальная	2	[1 -14]
		энергия. Закон сохранения полной механической энергии материальной точки.		
8	8	Тема: «Динамика твердого тела». Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращательного движения. Дифференциальные уравнения плоского движения. Элементарная теория Гироскопа.	2	[1 -14]
9	9	Тема: «Принцип Даламбера для материальной точки и механической системы материальных точек». Принцип Даламбера для материальной точки и системы. Главный вектор, главный момент сил инерции и методы их вычисления в частных случаях движения твердого тела. Понятие о статической и динамической балансировках. Принцип Даламбера-Лагранжа. Общее уравнение динамики	1	[1 -14]
		ИТОГО: за 2 семестр	17	

4.3. Тематика для самостоятельной работы студента

№ п/ п	Тематика по содержанию дисциплины, выделенная для самостоятельного изучения	Количество часов из содержания дисциплины	Рекомендуемая лите- ратура и источники информации	Формы контроля СРС
1	2	3	4	5
1.	Тема: «Центр параллельных сил. Центр тяжести». Сложение параллельных сил, центр параллельных сил. Радиус вектор и координаты центра параллельных сил. Центр тяжести. Вычисление центра тяжести тел простейших форм. Способы определения	1	[1 -14]	контрольная работа, практические занятия

	положения центра тяжести тел, сил к заданному центру.			
2.	Тема: «Плоскопараллельное движение твердого тела»	1	[1 -14]	контрольная работа,
	Плоское движение твердого			практические
	тела и движение плоской			занятия
	фигуры в ее плоскости. Леммы Даламбера. Уравнения			
	плоского движения.			
	Аналитическое определение			
	скорости и ускорения точки			
	фигуры при ее плоском			
	движении.			
	ИТОГО	2		

5. Образовательные технологии

В качестве основной используется традиционная технология изучения материала, предполагающая живое общение преподавателя и студента. Существенным дополнением служат иллюстративные видеоматериалы (видеолекции, электронные плакаты), которые при помощи демонстрационного оборудования, могут наглядно проиллюстрировать отдельные темы и вопросы разделов.

Отдельные вопросы могут быть проиллюстрированы. Все виды деятельности студента должны быть обеспечены доступом к учебно-методическим материалам (учебникам, учебным пособиям, методическим указаниям к решению задач, методическими указаниями к выполнению расчетно-графических работ). Учебные материалы должны быть доступны в печатном виде, а кроме этого могут быть представлены в электронном варианте (электронный учебник, обучающая программа и.т.д.) и предоставляться на CD и/или размещаться в сети учебного заведения.

Оценка качества освоения программы дисциплины (модуля) «Теоретическая механика» включает текущий контроль успеваемости, промежуточную аттестацию обучающихся и проведение экзамена промежуточного контроля (2 семестр). Конкретные формы и процедуры текущего и промежуточного контроля знаний осуществляется вузом самостоятельно путем реализации модульно-рейтинговой системы и доводятся до сведения обучающихся в конце каждого аттестационного периода обучения.

Курс разделен на три модуля: 1-й модуль – статика, 2-ой модуль - кинематика и 3-й модуль – динамика (2 семестр), каждый из которых, в свою очередь, делится на три части, соответствующих основным разделам дисциплины, усваиваемых студентами в течении 3-х аттестационных периодов учебного семестра.

Изучение каждой части модуля заканчивается выполнением соответствующих расчетно-графической работы, домашнего практикума, контрольной работы.

Для более глубокого изучения теоретического материала в течении семестра предполагается проведение двух коллоквиумов.

В процессе самостоятельной работы студент закрепляет полученные знания и навыки, выполняя под руководством преподавателя индивидуальные домашние задачи (домашний практикум) по каждому модулю. Выполненные работы в указанные сроки передается преподавателю для проверки. Сданная работа проверяется, рецензируется, оценивается по 20-ти бальной шкале и возвращается студенту. Возвращенные и, при необходимости, исправленные работы подлежат защите преподавателю в конце семестра. При защите работы студент должен продемонстрировать как знание теоретических вопросов данного блока, так и навыки решения соответствующих задач.

Выполнение определенного числа заданий для самостоятельной работы, защита расчетно-графической работы, контрольные работы и коллоквиумы является формой промежуточного контроля знаний студента по данному разделу и оценивается усредненным, по всем видам выполненных работ, числом баллов по 20-ти бальной шкале модульнорейтинговой системы оценки знаний ДГТУ в соответствии с графиком текущих аттестаций (3 раза за семестр).

Для аттестации обучающихся по дисциплине «Теоретическая механика» создаются фонды оценочных средств, включающие типовые задания, контрольные работы и методы контроля, позволяющие оценить знания, умения и уровень приобретённых компетенций. При наличии соответствующей материально-технической и проработанной методической базы, при промежуточном контроле усвоения материала модуля, как один из элементов, может использоваться тестирование. Рекомендуется (помимо оценочных средств, разработанных силами данного учебного заведения) пользоваться — при соответствующей адаптации применительно к используемым в данном учебном заведении рабочим программам — комплекты задач и тестовые задания, разработанные на федеральном уровне и получившие рекомендацию Научно-методического совета по теоретической механике.

При успешном прохождении промежуточного контроля по каждой из частей модуля, предусмотренных в данном семестре (56 баллов и более: сумма баллов по 3-м аттестациям, за посещение и активность на практических и лекционных занятиях, за дополнительные виды деятельности и общественную работу), студент получает допуск к экзамену.

Студентам должна быть предоставлена возможность оценивания содержания, организации и качества учебного процесса в целом, а также работы отдельных преподавателей.

5.1. Новые педагогические технологии и методы обучения

При обучении дисциплине «. Теоретическая механика» используются в различных сочетаниях, частично или полностью следующие педагогические технологии и методы обучения: системный, деятельностный, компетентностный, инновационный, дифференцированный, модульный, проблемный, междисциплинарный, способствующие формированию у студентов способностей к инновационной инженерной деятельности, во взаимосвязи с принципами фундаментальности, профессиональной направленности и интеграции образования.

Системный подход используется наиболее продуктивно на этапе определения структуры дисциплины, типизации связей с другими дисциплинами, анализа и определения компонентов, оптимизации образовательной среды.

Деятельностный подход используется для определения целей обучения, отбора содержания и выбора форм представления материала, демонстрации учебных задач, выбора средств обучения (научно-исследовательская и проектная деятельность), организации контроля результатов обучения, а также при реализации исследований в педагогической практике.

Компетентностный подход позволяет структурировать способности обучающегося и выделять необходимые элементы (компетенции), характеризующие их как интегральную способность студента решать профессиональные задачи в его будущей инновационной инженерной деятельности.

Инновационный подход к обучению позволяет отобрать методы и средства формирования инновационных способностей в процессе обучения как механике, так и сопутствующим курсам, а также обучения в олимпиадной и научно-исследовательской среде (контекстное обучение, обучение на основе опыта, междисциплинарный подход в обучении на основе анализа реальных задач в инженерной практике, обучение в команде и др.). При контекстном обучении решение поставленных задач достигается путем выстраивания отношений между конкретным знанием и его применением. Обучение на основе опыта подразумевает возможность интеграции собственного опыта с предметом обучения.

5.2. Интерактивные формы обучения

Интерактивное методы обучения предполагает прямое взаимодействие обучающегося со своим опытом и умение работать в коллективе при решении проблемной задачи. При использовании интерактивной формы обучения предполагается создание организационно – учебных условий, направленные на активизацию мышления, на формулирование цели конкретной работы и на мотивацию получения конечного результата.

Эффективным методом активизации коллективной творческой деятельности является «мозговой штурм», когда для решаемой задачи могут быть выдвинуты различные гипотезы, которые в последующем обсуждаются в группе с участием преподавателя. Для активизации процесса генерирования идей в ходе «мозгового штурма» в задачах механики рекомендуется использование такого приема, как аналогия с решенной задачей такого же типа.

Наглядное восприятие информации также является эффективным способом восприятия и освоения новых знаний, для чего используется «видеометод» обучения. Видео метод позволяет изложить некоторые задачи механики в динамическом развитии, используя средства анимации.

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, деловых и ролевых игр, разбор конкретных ситуаций, психологические и иные тренинги) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. В рамках учебных курсов должны быть предусмотрены встречи с представителями российских и зарубежных компаний, государственных и общественных организаций, мастерклассы экспертов и специалистов.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 11 часов (51*20%=10,2) аудиторных занятий. Занятия лекционного типа не могут составлять более 5 часов (11*40%=4,4), остальные 6 часов практические занятия.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Фонд оценочных средств является обязательным разделом $P\Pi Д$ (разрабатывается как приложение к рабочей программе дисциплины).

7. Учебно-методическое и информационное обеспечение дисциплины (модуля): (основная литература, дополнительная литература, программное обеспечение и Интернет-ресурсы следует привести в табличной форме).

Рекомендуемая литература и источники информации (основная и дополнительная)

		Необходимая			Количество изданий		
№ п/ п	Вид ы заня тий	учебная, учебно- методическая литература, программное обеспечение и	Автор(ы)	Издательство и год издания	В библ иоте ке	На кафе дре	
		интернет ресурсы			UF	L:	
1	2	3	4	5	6	7	
		ОСНОВНАЯ П	О ТЕОРЕТИЧЕСКОЙ	І МЕХАНИКЕ:			
1.	ЛК, ПЗ, срс	Теоретическая механика: учебное пособие	Валькова Т. А., Рабецкая О. И., Митяев А. Е. [и др.].	СФУ, 2019272c.	URL: https://e.lanb ook.com/boo k/157640		
2.	ЛК, ПЗ, срс	Теоретическая механика: учебное пособие	Атапин В. Г.	Новосибирск: НГТУ, 2017 108 с.	URL: https://e.lanb ook.com/boo k/118427		
3.	ЛК, ПЗ, срс	Теоретическая и аналитическая механика: учебное пособие	Бертяев В. Д., Ручинский В. С.	Санкт-Петербург: Лань, 2019 424 с.	URL: https://e.lanb ook.com/boo k/111879		
4.	ЛК, ПЗ, срс	Задачи по теоретической механике: учебное пособие	Мещерский, И. В.	Лань, 2019 448 с.	URL: https://e.lanb ook.com/boo k/115729		
5.	ЛК, ПЗ, срс	Теоретическая механика: учебник	Савчук В. П., Медведев Д. Г., Вярьвильская О. Н.	Минск: БГУ, 2016 231 с.	URL: https://e.lanb ook.com/boo k/180448		
6.	ЛК, ПЗ, срс	Курс теоретической механики: учебник	Никитин Н. Н.	Санкт-Петербург: Лань, 2011 720 с.	URL: https://e.lanb ook.com/boo k/1807		
7	ЛК, ПЗ, срс	Практикум по Теоретической механике: учебное пособие	Люкшин Б. А.	Москва: ТУСУР, 2012 171 с.	URL: https://e.lanb ook.com/boo k/4918		
8.	ЛК, ПЗ, срс	Теоретическая механика: Статика. Кинематика. Динамика	Митюшов Е. А., Берестова С. А.	Ижевск: Регулярная и хаотическая динамика,	URL: https://www. iprbookshop. ru/92002.		

				Институт	
				компьютерных	
				исследований,	
				2019 176 c.	
9.	ЛК,	Теоретическая	Антонов.	Москва: МГСУ,	URL:
	П3,	механика (динамика):		ЭБС АСВ, 2014	https://www.i
	срс			120 c.	prbookshop.r
					u/23747
10.	ЛК,	Теоретическая	Авраменко А. А.	Самара: СамГУ,	URL:
	П3,	механика: учебное		2019 118 c.	https://e.lanb
	срс	посо-			ook.com/boo
		бие			k/148616

ДОПОЛНИТЕЛЬНАЯ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

			ANTIO ILOI ETII IL		
	ЛК,	Компьютерные	Каменский А. А.,	Воронеж: ВГУ, -	URL:
	ПЗ,	лабораторные	Некипелов А. А.,	Часть 1 - 2016 44	https://e.lanb
11	срс	занятия по	Чернушкин.	c.	ook.com/boo
		теоретической			k/165295
		механике			
	ЛК,	Теоретическая меха-	Колмыкова И. В.	ЭБС АСВ, 2018	URL:
	ПЗ,	ника. Сборник зада-		126 c.	https://www.i
12	срс	ний:			prbookshop.r
					u/89852
	ЛК,	Теоретическая	Кульгина Л. М.,	Ставрополь:	URL:
13	ПЗ,	механика	Закинян А. Р.,	СКФУ, 2015 118	https://www.i
13	срс		Смерек Ю. Л.	c.	prbookshop.r
					u/62871
	ЛК,	Механика	Молотников В. Я.	Санкт-Петербург:	URL:
	ПЗ,	конструкций.		Лань, 2012 608 с.	https://e.lanb
14	срс	Теоретическая			ook.com/boo
14		механика.			k/4546
		Сопротивление			
		материалов			

8. Материально-техническое обеспечение дисциплины (модуля)

- 1. Мультимедийная лекционная аудитория 231 факультета АСФ на 50 мест.
- 2. Компьютерный класс 371 АСФ на 24 мест для проведения практических занятий с использованием технологий активного обучения.
 - 3. Мультимедийный курс лекций.
 - 4. Мультимедийный курс практических занятий.
- 5. Комплект слайдов учебно-наглядных пособий и электронные плакаты для аудиторных интерактивных занятий по теоретической механике.
- 6. Тестовые задания для текущего контроля и промежуточной аттестации с помощью компьютера. 7. Единое окно доступа к образовательным ресурсам: справочная система [портал]. URL: http://window.edu.ru/, сайт в интернете http://window.edu.ru/, сайт в интернете http://window.edu.ru/, сайт в интернете http://vuz.exponenta.ru

содержат значительное количество электронных учебных материалов (учебные пособия, наборы задач по различным разделам курса теоретической механики, много полезных компьютерных программ и анимированных иллюстраций) по всем разделам дисциплины «Теоретическая механика».

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки <u>07.03.01 – «Архитектура»</u> с учетом рекомендаций и ОПОП ВО по направлению и профилю подготовки <u>«Архитектурное проектирование»</u>

Специальные условия инвалидам и лицам с ограниченными возможностями здоровья (OB3)

Специальные условия обучения и направления работы с инвалидами и лицами с OB3 определены на основании:

- Федерального закона от 29.12.2012 №273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 24.11.1995 № 181-ФЗ «О социальной защите инвалидов в Российской Федерации»;
- приказа Минобрнауки России от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- методических рекомендаций по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса, утвержденных Минобрнауки России 08.04.2014 № АК-44/05вн).

Под специальными условиями для получения образования обучающихся с ОВЗ понимаются условия обучения, воспитания и развития, включающие в себя использование при необходимости адаптированных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего необходимую помощь, проведение групповых и индивидуальных коррекционных занятий, обеспечение доступа в здания ДГТУ и другие условия, без которых невозможно или затруднено освоение ОПОП обучающихся с ОВЗ.

Обучение в рамках учебной дисциплины обучающихся с ОВЗ осуществляется ДГТУ с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Обучение по учебной дисциплине обучающихся с OB3 может быть организовано как совместно с другими обучающимися, так и в отдельных группах.

В целях доступности обучения по дисциплине обеспечивается:

- 1) для лиц с ограниченными возможностями здоровья по зрению:
- наличие альтернативной версии официального сайта ДГТУ в сети «Интернет» для слабовидящих;

- весь необходимый для изучения материал, согласно учебному плану (в том числе, для обучающихся по индивидуальным учебным планам) предоставляется в электронном виде на диске.
 - индивидуальное равномерное освещение не менее 300 люкс;
 - присутствие ассистента, оказывающего обучающемуся необходимую помощь;
- обеспечение возможности выпуска альтернативных форматов печатных материалов

(крупный шрифт или аудиофайлы);

- обеспечение доступа обучающегося, являющегося слепым и использующего собакупроводника, к зданию ДГТУ.
 - 2) для лиц с ОВЗ по слуху:
- наличие микрофонов и звукоусиливающей аппаратуры коллективного пользования (аудиоколонки);
- 3) для лиц с OB3, имеющих нарушения опорно-двигательного аппарата, материальнотехнические условия должны обеспечивать возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях (наличие пандусов, поручней, расширенных дверных проемов и других приспособлений).

Перед началом обучения могут проводиться консультативные занятия, позволяющие студентам с OB3 адаптироваться к учебному процессу.

В процессе ведения учебной дисциплины научно-педагогическим работникам рекомендуется использование социально-активных и рефлексивных методов обучения, технологий социокультурной реабилитации с целью оказания помощи обучающимся с ОВЗ в установлении полноценных межличностных отношений с другими обучающимися, создании комфортного психологического климата в учебной группе.

Особенности проведения текущей и промежуточной аттестации по дисциплине для обучающихся с ОВЗ устанавливаются с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и др.). При необходимости предоставляется дополнительное время для подготовки ответа на зачете или экзамене

9. Лист изменений и дополнений к рабочей программе

Дополнения и изменения в рабочей программе на 2025 / 2026 учебный год.

В рабочую программу вносятся следующие изменения:
1. изменений нет;
2;
3;
4;
5
или делается отметка о нецелесообразности внесения каких-либо изменений или дополнений на данный учебный год.
Рабочая программа пересмотрена и одобрена на заседании кафедры «Архитектура» от 1606.2025 года, протокол № 10.
Заведующий кафедрой «Архитектура» — Зайнулабидова Х.Р., к.т.н., доцент
(название кафедры) (подпись, дата) (ФИО, уч. степень, уч. звание)
Согласовано:
Декан АСФ Батманов Э.З., к.т.н., доцент (ФИО, уч. степень, уч. звание)
Председатель МС факультета Агаханов Э.К., д.т.н., профессор