Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор

Дата подписания: 31.10.2025 15:08:51 Уникальный программный ключ:

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926



#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования Институт комплексной безопасности и специального приборостроения

### Региональный партнер ФГБОУ ВО «Дагестанский государственный технический университет»

| УТВЕРЖДАЮ        |                 |           |   |
|------------------|-----------------|-----------|---|
| ФГБОУ ВО «ДГТУ»  | opa             | Врио рект | I |
| Н.Л. Баламирзоев |                 |           |   |
| 2022 г.          | <b>&gt;&gt;</b> | <b>«</b>  |   |

### Рабочая программа дисциплины (модуля) Теория машинного обучения

Читающее подразделение

Направление 09.04.04 Программная инженерия

Направленность Системы искусственного интеллекта

Квалификация магистр

Форма обучения очная, очно-заочная, заочная

Общая трудоемкость 6 з.е.

#### Распределение часов дисциплины и форм промежуточной аттестации по семестрам

| Г |         |                  | I     |        |              |              | 1 0                    |                                                        |      | <u> </u>                       |
|---|---------|------------------|-------|--------|--------------|--------------|------------------------|--------------------------------------------------------|------|--------------------------------|
|   |         |                  |       |        | Pac          | спределени   | ие часов               |                                                        |      |                                |
|   | Семестр | Зачётные единицы | Bcero | Лекции | Лабораторные | Практические | Самостоятельная работа | Контактная работа в период практики и (или) аттестации |      | Формы промежуточной аттестации |
|   | 3       | 6                | 216   | 17     | 17           | 0            | 144                    | 2,4                                                    | 35,6 | Экзамен                        |
|   | 4       | 6                | 216   | 9      | 9            | 0            | 162                    | 0                                                      | 36   | Экзамен                        |
|   | 4       | 6                | 216   | 6      | 6            | 0            | 195                    | 0                                                      | 9    | Экзамен                        |

#### 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина «Теория машинного обучения» имеет своей целью способствовать формированию у обучающихся компетенций предусмотренных данной рабочей программой в соответствии с требованиями  $\Phi\Gamma$ OC BO по направлению подготовки 09.04.04 Программная инженерия с учетом специфики направленности подготовки — «Системы искусственного интеллекта».

Целью дисциплины является изучение магистрами статистических и алгоритмических основ анализа сигналов и многомерных массивов данных, а также знакомство с практическими приложениями статистических методов анализа сигналов и многомерных массивов данных. Целью дисциплины является изучение основ теории обучения машин, современных методов восстановления зависимостей по эмпирическим данным, включая дискриминантный, кластерный и регрессионный анализ, овладение навыками практического решения задач интеллектуального анализа данных.

#### Задачи:

- освоение магистрами базовых знаний (понятий, концепций, методов и моделей),
- приобретение теоретических знаний и практических умений и навыков, проведение собственных теоретических исследований,
- консультирование студентов в области машинного обучения и интеллектуального анализа данных.

### 2.МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Направление: 09.04.04 Программная инженерия Направленность: Системы искусственного интеллекта

 Блок:
 Дисциплины (модули)

 Часть:
 Обязательная часть

 Общая трудоемкость:
 6 з.е. (216 акад. час.).

### 3.КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен овладеть компетенциями:

- ОПК-1.2 Выбирает и применяет методы теоретического и экспериментального исследования объектов профессиональной деятельности.
- ОПК-2.2. Проектирует и разрабатывает алгоритмическое и программное обеспечение для решения профессиональных задач с использованием современных интеллектуальных технологий.
- ИИ-ОПК-1.2. Разрабатывает оригинальные программные средства для решения задач в области создания и применения искусственного интеллекта.
- ИИ-ОПК-3.2. Осуществляет методологическое обоснование научного исследования, создание и применение библиотек искусственного интеллекта.

### ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ХАРАКТЕРИЗУЮЩИЕ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

## ОПК-1.2 - Выбирает и применяет методы теоретического и экспериментального исследования объектов профессиональной деятельности.

Знать: методы теоретического и экспериментального исследования объектов профессиональной деятельности.

Уметь: Выбирать и применять методы теоретического и экспериментального исследования объектов профессиональной деятельности.

# ОПК-2.2. — Проектирует и разрабатывает алгоритмическое и программное обеспечение для решения профессиональных задач с использованием современных интеллектуальных технологий.

Знать: методы проектирования и разработки алгоритмического и программного обеспечения для решения профессиональных задач с использованием современных интеллектуальных технологий.

Уметь: Проектировать и разрабатывать алгоритмическое и программное обеспечение для решения профессиональных задач с использованием современных интеллектуальных технологий.

### ИИ-ОПК-1.2. – Разрабатывает оригинальные программные средства для решения задач в области создания и применения искусственного интеллекта.

Знать: принципы разработки оригинальных программных средств, в том числе с использованием современных информационно-коммуникационных и интеллектуальных компьютерных технологий, для решения профессиональных задач.

Уметь: разрабатывать оригинальные программные средства, в том числе с использованием современных информационно-коммуникационных и интеллектуальных компьютерных технологий, для решения задач в области создания и применения искусственного интеллекта.

### ИИ-ОПК-3.2. – Осуществляет методологическое обоснование научного исследования, создание и применение библиотек искусственного интеллекта.

Знать: приемы методологического обоснования научного исследования, методы организации библиотек искусственного интеллекта.

Уметь: проводить методологическое обоснование научного исследования, в том числе посредством создания и использования библиотек искусственного интеллекта.

# В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ОБУЧАЮЩИЙСЯ ДОЛЖЕН

В результате освоения дисциплины «Теория машинного обучения», формирующих компетенции ОПК-1.2, ОПК-2.2, ИИ-ОПК-1.2, ИИ-ОПК-3.2 обучающийся должен овладеть следующими результатами обучения по дисциплине:

Знать: фундаментальные понятия, современные подходы, методы и проблемы машинного обучения и интеллектуального анализа данных.

#### Уметь:

- понять и формализовать поставленную задачу анализа данных;
- использовать современные методы машинного обучения для практического решения задач анализа данных;
- при необходимости, продиктованной особенностями поставленной задачи, создавать новые методы машинного обучения;
- проводить численные эксперименты на модельных и реальных данных и интерпретировать их результаты;
- представлять результаты исследований в устной и письменной форме.
- навыками освоения большого объема информации и решения сложных теоретических и практических задач анализа данных;
- навыками самостоятельной работы и освоения новых дисциплин;

- культурой постановки, анализа и решения математических и прикладных задач, требующих для своего решения использования математических подходов и методов; предметным языком машинного обучения и интеллектуального анализа данных;
- навыками описания решения задач и представления полученных результатов.

### 4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебных занятий организация обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

| No | Наименование разделов и тем /вид                                                                                                                                                                                                                                                                       | Сем. | Часов | Компетенции                                           |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------------------------------------------------|--|--|--|
|    | занятия                                                                                                                                                                                                                                                                                                |      |       |                                                       |  |  |  |
|    | Раздел 1. Введение в машинное обучение                                                                                                                                                                                                                                                                 |      |       |                                                       |  |  |  |
| 1  | Лекция №1. Основные понятия. Определение предмета машинного обучения. Примеры задач и областей приложения. Образы и признаки. Типы задач предсказания. Регрессия. Таксономия. Классификация. Типы ошибок классификации. Обобщающая способность классификатора.                                         | 3    | 2     | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |  |  |  |
| 2  | Лабораторная работа № 1. Настройка среды для анализа данных. Среда разработки Русharm. Язык программирования Python. Библиотека Numpy.                                                                                                                                                                 | 3    | 2     |                                                       |  |  |  |
| 3  | Подготовка к аудиторным занятиям (Ср). Принцип минимизации эмпирического риска. Недообучение. Переобучение. Статистический, нейросетевой и структурно-лигвистический подходы к распознаванию образов. Структура типичной системы распознавания образов. Цикл построения системы распознавания образов. | 3    | 16    |                                                       |  |  |  |
| 4  | Лекция №2. Классификация. Общие принципы. Этапы классификации. Алгоритмы обучения классификаторов с учителем и без учителя. Дискриминантный анализ. Геометрическая интерпретация задачи классификации. Проективный подход.                                                                             | 3    | 2     | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |  |  |  |
| 5  | Лабораторная работа № 1. Настройка среды для анализа данных. Среда разработки Русharm. Язык программирования Руthon. Библиотека Numpy.                                                                                                                                                                 | 3    | 2     |                                                       |  |  |  |
| 6  | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Метрики в пространстве признаков. Евклидово расстояние. Расстояние Махалонобиса. Ошибки первого и второго рода. Чувствительность и избирательность.                                                                              | 3    | 16    |                                                       |  |  |  |

|    | TC 1                                                                | <u> </u> |    |               |
|----|---------------------------------------------------------------------|----------|----|---------------|
|    | Кривая мощностикритерия классификации.                              |          |    |               |
|    | ROС-кривые. Проверка классификатора.                                |          |    |               |
|    | Проверка тестовой выборкой. Перекрестная                            |          |    |               |
|    | проверка. Оценка информативности                                    |          |    |               |
|    | признаков                                                           |          |    |               |
|    | Раздел 2. Основные методы машинного обуче                           | ния      |    |               |
| 7  | Лекция №3.                                                          | 3        | 2  | ОПК-1.2, ОПК- |
|    | Байесовская классификация. Условная                                 |          |    | 2.2, ИИ-ОПК-  |
|    | вероятность. Формула полной вероятности.                            |          |    | 1.2, ИИ-ОПК-  |
|    | Формула Байеса. Статистическое                                      |          |    | 3.2.          |
|    | распознавание образов. Наивный                                      |          |    |               |
|    | байесовский классификатор. Задача                                   |          |    |               |
|    | классификации спама. Критерий отношения                             |          |    |               |
|    | правдоподобия.                                                      |          |    |               |
| 8  | Лабораторная работа № 2. Изучение                                   | 3        | 2  |               |
|    | нейросетей. Создание собственной                                    |          |    |               |
|    | нейросети.                                                          |          |    |               |
| 9  | Подготовка к аудиторным занятиям и                                  | 3        | 16 |               |
|    | выполнение домашнего задания (Ср).                                  |          |    |               |
|    | Байесовский уровень ошибки. Байесовский                             |          |    |               |
|    | риск. Критерий Байеса. Максимальный                                 |          |    |               |
|    | апостериорный критерий. Критерий                                    |          |    |               |
|    | максимального правдоподобия.                                        |          |    |               |
|    | Многоклассовые байесовские                                          |          |    |               |
|    | классификаторы. Байесовские                                         |          |    |               |
|    | классификаторы для нормально                                        |          |    |               |
|    | распределенных классов при различной                                |          |    |               |
|    | структуре матрицы ковариации                                        |          |    |               |
| 10 | Лекция №4.                                                          | 3        | 2  | ОПК-1.2, ОПК- |
| 10 | Деревья решений. Основные понятия.                                  | 3        | 2  | 2.2, ИИ-ОПК-  |
|    | Классы решаемых задач: описание данных,                             |          |    | 1.2, ИИ-ОПК-  |
|    | классификация, регрессия. Общий алгоритм                            |          |    | 3.2.          |
|    | построения дерева решений. Критерии                                 |          |    | 3.2.          |
|    | выбора наилучшего атрибута: прирост                                 |          |    |               |
|    | информации, относительный прирост                                   |          |    |               |
|    | информации, индекс Гини.                                            |          |    |               |
| 11 | Лабораторная работа № 2. Изучение                                   | 3        | 2  | _             |
|    | нейросетей. Создание собственной                                    |          |    |               |
|    | нейросети.                                                          |          |    |               |
| 12 | Подготовка к аудиторным занятиям и                                  | 3        | 16 | 1             |
| 12 | выполнение домашнего задания (Ср).                                  |          | 10 |               |
|    | Правила остановки разбиения дерева.                                 |          |    |               |
|    | Правила остановки разоисния дерева. Обрезание дерева. Алгоритм ID3. |          |    |               |
|    | Переобучение деревьев решений. Обработка                            |          |    |               |
|    | непрерывных атрибутов. Обучение на                                  |          |    |               |
|    | данных с пропусками. Программное                                    |          |    |               |
|    |                                                                     |          |    |               |
|    | обеспечение для построения деревьев решений.                        |          |    |               |
|    | -                                                                   |          |    |               |
| 10 | Раздел 3. Анализ многомерных д                                      | _        |    | OHIC 1.2 OHIC |
| 13 | Лекция №5.                                                          | 3        | 2  | ОПК-1.2, ОПК- |
|    | Корреляционные и причинно-следственные                              |          |    | 2.2, ИИ-ОПК-  |
|    | связи. Корреляция признаков и структура                             |          |    | 1.2, ИИ-ОПК-  |
|    | данных. Латентные структуры в данных.                               |          |    |               |

|    | Формальная и эффективная размерность данных. Структура и шум в данных.                                                                                                                                                                                                                                                                                                                                      |         |    | 3.2.                                                  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|-------------------------------------------------------|
| 14 | Понижение размерности данных.  Лабораторная работа № 3. Библиотеки языка Python: Theano, Neon                                                                                                                                                                                                                                                                                                               | 3       | 2  | -                                                     |
| 15 | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Поиск латентных структур. Отделение структуры от шума. Метод главных компонент как декомпозиция матрицы данных. Матрица счетов. Матрица нагрузок. Матрица ошибок. Объясненная и остаточная вариация в данных. Предобработка данных. Графическая интерпретация метода главных компонент. Критерии выбора количества главных компонент. | 3       | 16 |                                                       |
| 16 | Лекция №6. Регрессия. Метод наименьших квадратов. Теорема ГауссаМаркова. Обобщенный метод наименьших квадратов. Рекурсивный метод наименьших квадратов. Анализ регрессионных остатков.                                                                                                                                                                                                                      | 3       | 2  | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |
| 17 | Лабораторная работа № 3. Библиотеки языка Python: Theano, Neon                                                                                                                                                                                                                                                                                                                                              | 3       | 2  |                                                       |
| 18 | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Графическая проверка линейности, гомоскедастичности. Объясненная и необъясненная вариация. Коэффициент детерминации. Неустойчивость МНК к выбросам. Робастная регрессия                                                                                                                                                               | 3       | 16 |                                                       |
|    | Раздел 4. Методы распознавания                                                                                                                                                                                                                                                                                                                                                                              | образов |    |                                                       |
| 19 | Лекция №7.<br>Комитетные методы распознавания образов.<br>Теоретические предпосылки комитетных<br>методов. Одиночные модели и ансамбли<br>моделей.                                                                                                                                                                                                                                                          | 3       | 2  | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |
| 20 | Лабораторная работа № 4 Распознавание картинок.                                                                                                                                                                                                                                                                                                                                                             | 3       | 2  |                                                       |
| 21 | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Последовательные методы комитетов: бустинг, AdaBoost. Ошибки классификации комитетными методами. Бустинг и переобучение. Параллельные методы комитетов: бутстреп, бэггинг                                                                                                                                                             | 3       | 16 |                                                       |
| 22 | Лекция №8. Нейронные сети. Предпосылки возникновения нейросетей. Перцептрон Розенблатта. Многослойный перцептрон. Карты Кохонена. Сети Хопфилда. Методы                                                                                                                                                                                                                                                     | 3       | 2  | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |

|    | обучения нейросетей. Метод опорных векторов.                                                                                                                                                                                                                          |   |      |                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-------------------------------------------------------|
| 23 | Лабораторная работа № 4 Распознавание картинок.                                                                                                                                                                                                                       | 3 | 2    |                                                       |
| 24 | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Машинное обучение и теория Вапника-Червоненкиса. Принцип структурной минимизации риска. Метод опорных векторов. Политика назначения штрафов. Ядерные преобразования. Регрессия опорных векторов | 3 | 16   |                                                       |
| 25 | Лекция №9. Принцип структурной минимизации риска. Метод опорных векторов. Политика назначения штрафов.                                                                                                                                                                | 3 | 1    | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |
| 26 | Лабораторная работа № 4 Распознавание картинок.                                                                                                                                                                                                                       | 3 | 1    |                                                       |
| 27 | Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср). Ядерные преобразования. Регрессия опорных векторов                                                                                                                                              | 3 | 16   |                                                       |
|    | Промежуточная аттестация (экзамен)                                                                                                                                                                                                                                    | 3 |      |                                                       |
| 28 | Подготовка к сдаче промежуточной аттестации (Экзамен)                                                                                                                                                                                                                 | 3 | 35,6 | ОПК-1.2, ОПК-<br>2.2, ИИ-ОПК-<br>1.2, ИИ-ОПК-<br>3.2. |
| 29 | Контактная работа с преподавателем в период промежуточной аттестации (КрПА).                                                                                                                                                                                          | 3 | 0,4  |                                                       |

### 5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

#### 5.1. Перечень компетенций

Перечень компетенций, на освоение которых направлено изучение дисциплины «Теория машинного обучения», с указанием результатов их формирования в процессе освоения образовательной программы, представлен в п.3 настоящей рабочей программы/

- 5.2. Типовые контрольные вопросы и задания (экзаменационные вопросы)
- 1. Основные понятия.
- 2. Определение предмета машинного обучения.
- 3. Примеры задач и областей приложения.
- 4. Образы и признаки.
- 5. Типы задач предсказания.
- 6. Регрессия. Таксономия. Классификация. Типы ошибок классификации.
- 7. Обобщающая способность классификатора.
- 8. Этапы классификации.
- 9. Алгоритмы обучения классификаторов с учителем и без учителя.
- 10. Дискриминантный анализ.

- 11. Геометрическая интерпретация задачи классификации.
- 12. Проективный подход.
- 13. Байесовская классификация.
- 14. Условная вероятность.
- 15. Формула полной вероятности.
- 16. Формула Байеса.
- 17. Статистическое распознавание образов.
- 18. Наивный байесовский классификатор. 3
- 19. Задача классификации спама.
- 20. Критерий отношения правдоподобия.
- 21. Деревья решений. Основные понятия.
- 22. Классы решаемых задач: описание данных, классификация, регрессия.
- 23. Общий алгоритм построения дерева решений.
- 24. Критерии выбора наилучшего атрибута: прирост информации, относительный прирост информации, индекс Гини.
- 25. Корреляционные и причинно-следственные связи.
- 26. Корреляция признаков и структура данных.
- 27. Латентные структуры в данных.
- 28. Формальная и эффективная размерность данных.
- 29. Структура и шум в данных.
- 30. Понижение размерности данных.
- 31. Регрессия. Метод наименьших квадратов.
- 32. Теорема Гаусса Маркова.
- 33. Обобщенный метод наименьших квадратов.
- 34. Рекурсивный метод наименьших квадратов.
- 35. Анализ регрессионных остатков.
- 36. Комитетные методы распознавания образов.
- 37. Теоретические предпосылки комитетных методов.
- 38. Одиночные модели и ансамбли моделей.
- 39. Нейронные сети.
- 40. Предпосылки возникновения нейросетей.
- 41. Перцептрон Розенблатта.
- 42. Многослойный перцептрон.
- 43. Карты Кохонена. Сети Хопфилда.
- 44. Методы обучения нейросетей.
- 45. Метод опорных векторов.

#### 5.3. Фонд оценочных материалов

Полный перечень оценочных материалов представлен в приложении 1

### 6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

#### 6.1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

| Наименование помещений               | Перечень основного оборудования          |
|--------------------------------------|------------------------------------------|
| Компьютерный класс                   | Компьютерная техника с возможностью      |
|                                      | подключения к сети «Интернет»,           |
|                                      | мультимедийное оборудование,             |
|                                      | специализированная мебель.               |
| Учебная аудитория для проведения     | Мультимедийное оборудование,             |
| занятий лекционного и семинарского   | специализированная мебель, наборы        |
| типа, групповых и индивидуальных     | демонстрационного оборудования и учебно- |
| консультаций, текущего контроля и    | наглядных пособий, обеспечивающие        |
| промежуточной аттестации             | тематические иллюстрации.                |
| Помещение для самостоятельной работы | Компьютерная техника с возможностью      |
| обучающихся                          | подключения к сети "Интернет" и          |
|                                      | обеспечением доступа в электронную       |
|                                      | информационно- образовательную среду     |
|                                      | организации.                             |

#### 6.2. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- Python 3.8.16
- Adobe Acrobat Reader DC
- Google Chrome
- Pycharm 2020.3.2
- Apache Open Office
- Office Pro Plus Russian OLPNL Academic Edition
- Kaspersky Endpoint Security
- Internet

#### 6.3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

#### 6.3.1. Основная литература

- 1. Воронова, Л. И. Масhine Learning: регрессионные методы интеллектуального анализа данных: учебное пособие / Л. И. Воронова, В. И. Воронов. Москва: Московский технический университет связи и информатики, 2018. 82 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/81325.html (дата обращения: 07.11.2020). Режим доступа: для авторизир. пользователей
- 2. Ракитский, А. А. Методы машинного обучения: учебно-методическое пособие / А. А. Ракитский. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2018. 32 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/90591.html (дата обращения: 07.11.2020). Режим доступа: для авторизир. Пользователей
- 3. Неделько, В. М. Основы статистических методов машинного обучения: учебное пособие / В. М. Неделько. Новосибирск: Новосибирский государственный технический университет, 2010. 72 с. ISBN 978-5-7782-1385-2. Текст: электронный // Электронно-библиотечная система IPR

BOOKS : [сайт]. — URL: http://www.iprbookshop.ru/45418.html (дата обращения: 07.11.2020). — Режим доступа: для авторизир. пользователей

#### 6.3.2. Дополнительная литература

- 4. Сараев, П. В. Методы машинного обучения: методические указания и задания к лабораторным работам по курсу / П. В. Сараев. Липецк: Липецкий государственный технический университет, ЭБС ACB, 2017. 48 с. ISBN 2227- 8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/83183.html (дата обращения: 07.11.2020). Режим доступа: для авторизир. пользователей Журнал "Вычислительные технологии" // http://elibrary.ru/title\_about.asp?id=8610
- 5. Журнал "Информатика и ее применения" // <a href="http://elibrary.ru/title\_about.asp?id=26694">http://elibrary.ru/title\_about.asp?id=26694</a>
- 6. Журнал "Информатика и образование" // <a href="http://elibrary.ru/title\_about.asp?id=8739">http://elibrary.ru/title\_about.asp?id=8739</a>

# 6.4. РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ СОВРЕМЕННЫХ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Моделирование систем: <a href="https://www.intuit.ru/studies/courses/623/479/info">https://www.intuit.ru/studies/courses/623/479/info</a>
- 2. Data Mining: https://www.intuit.ru/studies/courses/6/6/info

# 6.5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Самостоятельная работа студента направлена на подготовку к учебным занятиям и на развитие знаний, умений и навыков, предусмотренных программой дисциплины.

В соответствии с учебным планом дисциплина может предусматривать лекции, практические занятия и лабораторные работы, а также выполнение и защиту курсового проекта (работы). Успешное изучение дисциплины требует посещения всех видов занятий, выполнение заданий преподавателя и ознакомления с основной и дополнительной литературой. В зависимости от мероприятий, предусмотренных учебным планом и разделом 4, данной программы, студент выбирает методические указания для самостоятельной работы из приведённых ниже.

При подготовке к лекционным занятиям студентам необходимо: перед очередной лекцией необходимо просмотреть конспект материала предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях.

Практические занятия завершают изучение наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.

При подготовке к практическому занятию студенты имеют возможность воспользоваться консультациями преподавателя.

При подготовке к практическим занятиям студентам необходимо: приносить с собой рекомендованную преподавателем литературу к конкретному занятию; до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;

- в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, заданных для самостоятельного решения;
- в ходе семинара давать конкретные, четкие ответы по существу вопросов;
- на занятии доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.

Студентам, пропустившим занятия (независимо от причин), не имеющие письменного решения задач или не подготовившиеся к данному практическому занятию, рекомендуется не позже чем в 2-недельный срок явиться на консультацию к преподавателю и отчитаться по теме, изученную на занятии.

Методические указания необходимые для изучения и прохождения дисциплины приведены в составе образовательной программы

# 6.6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБУЧЕНИЮ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения лиц с ОВЗ.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорно-двигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
  - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
  - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

#### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

#### Теория машинного обучения

#### Назначение оценочных материалов

Фонд оценочных материалов ( $\Phi$ OM) создается в соответствии с требованиями  $\Phi$ ГОС ВО для аттестации обучающихся на соответствие их учебных достижений поэтапным требованиям основной профессиональной образовательной программе (ОПОП) при проведении входного и текущего оценивания, а также промежуточной аттестации обучающихся.  $\Phi$ OC является составной частью нормативно-методического обеспечения системы оценки качества освоения ОПОП ВО, входит в состав ОПОП.

Фонд оценочных материалов — комплект методических материалов, нормирующих процедуры оценивания результатов обучения, т.е. установления соответствия учебных достижений запланированным результатам обучения и требованиям образовательных программ, рабочих программ модулей (дисциплин).

Фонд оценочных материалов сформирован на основе ключевых принципов оценивания:

- валидности: объекты оценки должны соответствовать поставленным целям обучения;
- надежности: использование единообразных стандартов и критериев для оценивания достижений;
  - объективности: разные студенты должны иметь равные возможности добиться успеха. Основными параметрами и свойствами ФОМ являются:
- предметная направленность (соответствие предмету изучения конкретной учебной дисциплины);
- содержание (состав и взаимосвязь структурных единиц, образующих содержание теоретической и практической составляющих учебной дисциплины);
  - объем (количественный состав оценочных средств, входящих в ФОМ);
- качество оценочных средств и ФОМ в целом, обеспечивающее получение объективных и достоверных результатов при проведении контроля с различными целями.

Целью ФОМ является проверка сформированности у студентов компетенций:

Карта компетенций

| Контролируемые компетенции           | Планируемый результат обучения               |
|--------------------------------------|----------------------------------------------|
| ОПК-1.2. – Решает основные,          | Знать: методы решения нестандартных          |
| нестандартные задачи создания и      | профессиональных задач, в том числе в новой  |
| применения искусственного интеллекта | или незнакомой среде и в междисциплинарном   |
| в том числе в новой или незнакомой   | контексте, с применением математических,     |
| среде и в междисциплинарном          | естественнонаучных, социально-               |
| контексте, с применением             | экономических, общеинженерных знаний и       |
| математических, естественнонаучных,  | знаний в области когнитивных наук.           |
| социально-экономических,             | Уметь: решать основные, нестандартные задачи |
| общеинженерных знаний и знаний в     | создания и применения искусственного         |
| области когнитивных наук.            | интеллекта.                                  |
| ОПК-2.2. – Проектирует и             | Знать: методы проектирования и разработки    |
| разрабатывает алгоритмическое и      | алгоритмического и программного обеспечения  |
| программное обеспечение для решения  | для решения профессиональных задач с         |
| профессиональных задач с             | использованием современных                   |
| использованием современных           | интеллектуальных технологий.                 |
| интеллектуальных технологий.         | Уметь: Проектировать и разрабатывать         |
|                                      | алгоритмическое и программное обеспечение    |

|                                                                                                                                | для решения профессиональных задач с использованием современных интеллектуальных технологий.                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ИИ-ОПК-1.2. – Разрабатывает оригинальные программные средства для решения задач в области создания и применения искусственного | Уметь: адаптировать существующие математические, естественно-научные и социально-экономические методы для решения основных, нестандартных задач создания и применения искусственного интеллекта.  Знать: принципы разработки оригинальных программных средств, в том числе с использованием современных информационно-коммуникационных и интеллектуальных |
| интеллекта.                                                                                                                    | компьютерных технологий, для решения профессиональных задач.  Уметь: разрабатывать оригинальные программные средства, в том числе с использованием современных информационнокоммуникационных и интеллектуальных компьютерных технологий, для решения задач в области создания и применения искусственного интеллекта.                                     |
| ИИ-ОПК-3.2. – Осуществляет методологическое обоснование научного исследования, создание и применение библиотек искусственного  | Знать: приемы методологического обоснования научного исследования, методы организации библиотек искусственного интеллекта.                                                                                                                                                                                                                                |
| интеллекта.                                                                                                                    | Уметь: проводить методологическое обоснование научного исследования, в том числе посредством создания и использования библиотек искусственного интеллекта.                                                                                                                                                                                                |

Матрица компетентностных задач по дисциплине

| Контролируемые блоки (темы)   | Контролируемые        | Оценочные средства        |
|-------------------------------|-----------------------|---------------------------|
| дисциплины                    | компетенции (или их   |                           |
|                               | части)                |                           |
| Раздел 1. Введение в машинное | ОПК-1.2, ОПК-2.2, ИИ- | Практические задания      |
| обучение                      | ОПК-1.2, ИИ-ОПК-3.2.  | Вопросы для               |
|                               |                       | самостоятельного контроля |
|                               |                       | знаний студентов          |
|                               |                       | Вопросы и задания для     |
|                               |                       | домашней работы           |
| Раздел 2. Основные методы     | ОПК-1.2, ОПК-2.2, ИИ- | Практические задания      |
| машинного обучения            | ОПК-1.2, ИИ-ОПК-3.2.  | Вопросы для               |
|                               |                       | самостоятельного контроля |
|                               |                       | знаний студентов          |
|                               |                       | Вопросы и задания для     |
|                               |                       | домашней работы           |
| Раздел 3. Анализ многомерных  | ОПК-1.2, ОПК-2.2, ИИ- | Практические задания      |
| данных                        | ОПК-1.2, ИИ-ОПК-3.2.  | Вопросы для               |
|                               |                       | самостоятельного контроля |
|                               |                       | знаний студентов          |
|                               |                       | Вопросы и задания для     |

|                       |                       | домашней работы           |
|-----------------------|-----------------------|---------------------------|
| Раздел 4. Методы      | ОПК-1.2, ОПК-2.2, ИИ- | Практические задания      |
| распознавания образов | ОПК-1.2, ИИ-ОПК-3.2.  | Вопросы для               |
|                       |                       | самостоятельного контроля |
|                       |                       | знаний студентов          |
|                       |                       | Вопросы и задания для     |
|                       |                       | домашней работы           |

#### Оценочные средства Текущий контроль

Целью текущего контроля знаний является установление подробной, реальной картины студенческих достижений и успешности усвоения ими учебной программы на данный момент времени. В условиях рейтинговой системы контроля результаты текущего оценивания студента используются как показатель его текущего рейтинга.

Текущий контроль успеваемости осуществляется в течение семестра, в ходе повседневной учебной работы по индивидуальной инициативе преподавателя. Данный вид контроля стимулирует у студентов стремление к систематической самостоятельной работе по изучению дисциплины.

#### Выполнение заданий лабораторных работ

Практические задания выдаются студентам с целью применения полученных знаний на практике под руководством преподавателя. Практические задания могут быть представлены в виде решения задач, проблемных заданий, тренингов и иных видах, направленных на получение практических знаний.

# Описание видов самостоятельной работы, предусмотренных РПД Подготовка к аудиторным занятиям

Подготовка к аудиторным занятиям состоит из изучения материала по соответствующей теме и ответов на вопросы для самоконтроля. Проверка уровня подготовки студентов к занятиям может проводится устным опросом, тестом, контрольной работой или иными видами текущего контроля.

#### Выполнение домашнего задания

Домашнее задание, как правило состоит из нескольких вопросов и заданий. Домашняя контрольная работа выполняется студентом самостоятельно не во время аудиторных занятий и имеет своей целью проверить текущий уровень формирования компетенций

#### Задания для текущего контроля

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Оценка знаний, умений и навыков в процессе изучения дисциплины производится с использованием фонда оценочных средств.

# 1. Типовые контрольные задания или иные материалы, необходимые для оценки результатов освоения образовательной программы

ТИПОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ:

#### Экзамен

- а) типовые вопросы/задания (Приложение 1)
- б) критерии оценивания.

При оценке знаний на экзамене учитывается:

- 1. Уровень сформированности компетенций.
- 2. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 3. Уровень знания фактического материала в объеме программы.
- 4. Логика, структура и грамотность изложения вопроса.
- 5. Умение связать теорию с практикой.
- 6. Умение делать обобщения, выводы.

| No॒       | Оценка              | Критерии оценки                                             |
|-----------|---------------------|-------------------------------------------------------------|
| $\Pi/\Pi$ |                     |                                                             |
| 1         | Отлично             | Ответы на поставленные вопросы излагаются логично,          |
|           |                     | последовательно и не требуют дополнительных пояснений.      |
|           |                     | Полно раскрываются причинно-следственные связи между        |
|           |                     | явлениями и событиями. Делаются обоснованные выводы.        |
|           |                     | Демонстрируются глубокие знания базовых                     |
|           |                     | нормативно-правовых актов. Соблюдаются нормы литературной   |
|           |                     | речи.                                                       |
| 2         | Хорошо              | Ответы на поставленные вопросы излагаются                   |
|           |                     | систематизировано и последовательно. Базовые нормативно-    |
|           |                     | правовые акты используются, но в недостаточном объеме.      |
|           |                     | Материал излагается уверенно. Раскрытыпричинно-             |
|           |                     | следственные связи между явлениями и событиями. Демон-      |
|           |                     | стрируется умение анализировать материал, однако не все     |
|           |                     | выводы носят аргументированный и доказательный характер.    |
|           |                     | Соблюдаются нормы литературной речи.                        |
| 3         | Удовлетворительно   | Допускаются нарушения в последовательности изложения.       |
|           |                     | Имеются упоминания об отдельных базовых нормативно-         |
|           |                     | правовых актах. Неполно раскрываются причинно-              |
|           |                     | следственные связи между явлениямии событиями.              |
|           |                     | Демонстрируются поверхностные знания вопроса, с             |
|           |                     | трудом решаются конкретные задачи. Имеются затруднения с    |
|           |                     | выводами. Допускаются нарушения норм литературной речи.     |
| 4         | Неудовлетворительно | Материал излагается непоследовательно, сбивчиво, не         |
|           |                     | представляет определенной системы знаний по дисциплине. Не  |
|           |                     | раскрываются причинно-следственные связи между явлениями и  |
|           |                     | событиями. Не проводится анализ. Выводы отсутствуют. Ответы |
|           |                     | на дополнительные вопросы отсутствуют. Имеются заметные     |
|           |                     | нарушения норм литературной речи.                           |

#### ТИПОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ:

#### Тесты

- а) типовые задания (Приложение 2)
- б) критерии оценивания.

При оценке знаний по результатам тестов учитывается:

- 1. Уровень сформированности компетенций.
- 2. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
  - 3. Уровень знания фактического материала в объеме программы.
  - 4. Логика, структура и грамотность изложения вопроса.
  - 5. Умение связать теорию с практикой.
  - 6. Умение делать обобщения, выводы.

| № п/п | Оценка              | Критерии оценки                                                          |  |  |  |
|-------|---------------------|--------------------------------------------------------------------------|--|--|--|
| 1     | Отлично             | если выполнены следующие условия:                                        |  |  |  |
|       |                     | <ul> <li>даны правильные ответы не менее чем на 90% вопросов</li> </ul>  |  |  |  |
|       |                     | теста, исключая вопросы, на которые студент должен дать                  |  |  |  |
|       |                     | свободный ответ;                                                         |  |  |  |
|       |                     | <ul> <li>на все вопросы, предполагающие свободный ответ, сту-</li> </ul> |  |  |  |
|       |                     | дент дал правильный и полный ответ                                       |  |  |  |
| 2     | Хорошо              | если выполнены следующие условия:                                        |  |  |  |
|       |                     | – даны правильные ответы не менее чем на 75% вопросов                    |  |  |  |
|       |                     | теста, исключая вопросы, на которые студент должен дать                  |  |  |  |
|       |                     | свободный ответ;                                                         |  |  |  |
|       |                     | <ul> <li>на все вопросы, предполагающие свободный ответ, сту-</li> </ul> |  |  |  |
|       |                     | дент дал правильный ответ, но допустил незначительные                    |  |  |  |
|       |                     | ошибки и не показал необходимой полноты                                  |  |  |  |
| 3     | Удовлетворительно   | если выполнены следующие условия:                                        |  |  |  |
|       |                     | <ul> <li>даны правильные ответы не менее чем на 50% вопросов</li> </ul>  |  |  |  |
|       |                     | теста, исключая вопросы, на которые студент должен дать                  |  |  |  |
|       |                     | свободный ответ;                                                         |  |  |  |
|       |                     | <ul> <li>на все вопросы, предполагающие свободный ответ, сту-</li> </ul> |  |  |  |
|       |                     | дент дал непротиворечивый ответ, или при ответе допустил                 |  |  |  |
|       |                     | значительные неточности и не показал полноты                             |  |  |  |
| 4     | Неудовлетворительно | · · · · · · · · · · · · · · · · · · ·                                    |  |  |  |
|       |                     | оценку «удовлетворительно».                                              |  |  |  |
| 5     | Зачтено             | Выставляется при соответствии параметрам шкалы на                        |  |  |  |
|       |                     | уровнях «отлично», «хорошо», «удовлетворительно».                        |  |  |  |
| 6     | Не зачтено          | Выставляется при соответствии параметрам шкалы на                        |  |  |  |
|       |                     | уровне «неудовлетворительно».                                            |  |  |  |

# 3. Перечень и характеристики процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций

Процедура проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине регламентируется локальным нормативным актом.

Перечень и характеристика процедур текущего контроля и промежуточной аттестации по дисциплине

|                     |                  | Периодичность и     |                |                     |
|---------------------|------------------|---------------------|----------------|---------------------|
| $N_{\underline{0}}$ | Наименование оце | способ проведения   | Виды           | Форма учета         |
|                     | ночного средства | процедуры           | вставляемых    |                     |
|                     |                  | оценива-            | оценок         |                     |
|                     |                  | кин                 |                |                     |
|                     |                  | Раз в семестр, по   | По пятибальной | Ведомость, зачетная |
| 1.                  | Экзамен          | окончании           | шкале          | книжка, портфолио   |
|                     |                  | изучения            |                |                     |
|                     |                  | дисциплины          |                |                     |
|                     |                  | по окончании изуче- | По пятибальной | Журнал успеваемости |
| 2.                  | Тест             | ния разделов        | шкале          | преподавателя       |
|                     |                  | дисциплины          |                |                     |

### Типовые контрольные задания и иные материалы, необходимые для оценки результатов обучения

#### Теоретические вопросы

- 1. Смещение (bias) и разброс (variance).
- 2. Принципиальное отличие байесовского и классического подхода к статистике
- 3. Методология CRISP-DM
- 4. Интерпретация моделей машинного обучения
- 5. Деревья решений и CART алгоритм
- 6. "Случайный лес" (Random Forest)
- 7. Градиентный бустинг
- 8. Гребневая регрессия
- 9. Логистическая регрессия
- 10. LASSO
- 11. Регуляризация
- 12. Выявление аномалий
- 13. Алгоритм классификации kNN
- 14. Метрики качества регрессии MAE RMSE
- 15. Метрики качества классификации перекрестная кросс-энтропия, ассигасу, точность, полнота, F-мера.
- 16. Алгоритмы снижения размерности
- 17. Алгоритмы кластеризации
- 18. Ошибки первого и второго рода, уровень значимости и мощность
- 19. p-value что означает и как интерпретировать

#### Практические вопросы

- 1. Процедура кросс-валидации
- 2. Кросс-валидация для временных рядов
- 3. Решение проблемы дисбаланса классов
- 4. Решение проблемы пропущенных значений
- 5. Кривые валидации и обучения.
- 6. Стекинг
- 7. Кодирование категориальных признаков
- 8. Биннинг признаков
- 9. Отбор признаков
- 10. Извлечение признаков из текста
- 11. Стандартизация признаков
- 12. Проблемы, вызванные скоррелированными признаками

Оценочные материалы по текущему контролю и промежуточной аттестации, предназначенные для проверки соответствия уровня подготовки по дисциплине «Теория машинного обучения», планируемым результатам освоения образовательной программы (в соответствии с образовательными стандартами), хранятся на кафедре-разработчике РПД в печатном и электронном виде.