Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор

Дата подписания: 31.10.2025 15:08:50 Уникальный программный ключ:

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Институт комплексной безопасности и специального приборостроения

Региональный партнер ФГБОУ ВО «Дагестанский государственный технический университет»

		УТВЕРЖДАЮ
Врио ректо	ора Ф	ГБОУ ВО «ДГТУ»
		_ Н.Л. Баламирзоев
«	>>	2022 г.

Рабочая программа дисциплины (модуля) **Б1.В.ДВ.02.01 Оценка качества программного обеспечения**

Читающее подразделение

Направление 09.04.04 Программная инженерия

Направленность Системы искусственного интеллекта

Квалификация магистр

Форма обучения очная, очно-заочная, заочная

Общая трудоемкость 3 з.е.

Распределение часов дисциплины и форм промежуточной аттестации по семестрам

			Распределение часов							
	Семестр	Зачётные единицы	Всего	Лекции	Лабораторные	Практические	Самостоятельная работа	Контактная работа в период практики и (или) аттестации	Контроль	Формы промежуточной аттестации
	1	3	108	9	17	0	81,75	0,25	35,6	Зачет
ſ	1	3	108	6	9	0	93	0	0	Зачет
	1	3	108	3	6	0	95	0	4	Зачет

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина «Оценка качества программного обеспечения» имеет своей целью способствовать формированию у обучающихся компетенций предусмотренных данной рабочей программой в соответствии с требованиями ФГОС ВО по направлению подготовки 09.04.04 Программная инженерия с учетом специфики направленности подготовки — «Системы искусственного интеллекта». Целями освоения дисциплины «Оценка качества программного обеспечения» являются формирование у студентов профессиональных знаний и практических навыков по тестированию программного обеспечения (ПО) и контролю качества разработки программных продуктов (ПП).

2.МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Направление: 09.04.04 Программная инженерия Направленность: Системы искусственного интеллекта

Блок: Дисциплины (модули) Часть: Вариативнаячасть Общая трудоемкость: 3 з.е. (108 акад. час.).

3.КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен овладеть компетенциями:

ПК-3.1 - Ставит задачи по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области.

ПК-3.2 - Руководит исследовательской группой по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ХАРАКТЕРИЗУЮЩИЕ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

ПК-3.1 - Ставит задачи по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области.

Знать: классы методов и алгоритмов машинного обучения.

Уметь: ставить задачи и разрабатывать новые методы и алгоритмы машинного обучения.

ПК-3.2 - Руководит исследовательской группой по разработке или совершенствованию методов и алгоритмов для решения комплекса задач предметной области.

Знать: методы и критерии оценки качества моделей машинного обучения.

Уметь: определять критерии и метрики оценки результатов моделирования при построении систем искусственного интеллекта в исследуемой области

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ОБУЧАЮЩИЙСЯ ДОЛЖЕН

В результате изучения дисциплины студент должен: знать:

- основные понятия и методы тестирования;
- условия применения тестирования;
- приемы тестирования на разных фазах разработки качественного программного продукта. уметь:
- разрабатывать тестовые программы и тестовые наборы в программном проекте;
- разрабатывать проектную документацию для этапа тестирования;
- тестировать программного обеспечения проектов, разработанных на Си. владеть:
- основными методиками тестирования программного обеспечения;
- одним либо несколькими прикладными программами по тестированию ПО.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебных занятий организация обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

No	Наименование разделов и тем /вид	Сем.	Часов	Компетенции
	занятия/			
	Введение в интеллектуальные системы и те	хнологии (1	ІСиТ)	
1	Лекция №1.	1	2	ПК-3.1
	Основные подходы к машинному			ПК-3.2
	распознаванию			
2	Лабораторная работа №1	1	4	
	Принятие решения по максимуму			
	правдоподобия.		• • •	
3	Подготовка к аудиторным занятиям (Ср)	1	20	
4	Лекция №2.	1	2	ПК-3.1
	Классификация на основе байесовской			ПК-3.2
	теории решений		_	
5	Лабораторная работа №2	1	4	
	Однослойный персептрон			
6	Подготовка к аудиторным занятиям и	1	20	
	выполнение домашнего задания (Ср).		_	
7	Лекция №3.	1	2	ПК-3.1
	Линейный и нелинейный классификаторы			ПК-3.2
8	Лабораторная работа №3	1	4	
	Оптимальная селекция на основе			
9	нейронной сети Полготовка к аулиторным занятиям и 1 20			
9	Подготовка к аудиторным занятиям и	1	20	
10	выполнение домашнего задания (Ср).	1	2	ПИ 2.1
10	Лекция №4. Комитетные методы решения задач	1	_ <u>_</u>	ПК-3.1
	Комитетные методы решения задач распознавания			ПК-3.2
11	распознавания Лабораторная работа №4	1	4	
11	лаоораторная раоота леч	1	-	

	Преобразование Хаара.			
12	Подготовка к аудиторным занятиям и	1	16	
	выполнение домашнего задания (Ср).			
13	Лабораторная работа №5	1	1	
14	Подготовка к аудиторным занятиям и	1	5,75	
	выполнение домашнего задания (Ср).			
15	Промежуточная аттестация (экзамен)			
16	6 Подготовка к сдаче промежуточной		35,6	ПК-3.1
	аттестации (Экзамен)			ПК-3.2
17	Контактная работа с преподавателем в	_	0,25	ПК-3.1
	период промежуточной аттестации			ПК-3.2
	(КрПА).			

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

5.1. Перечень компетенций

Перечень компетенций, на освоение которых направлено изучение дисциплины «Оценка качества программного обеспечения», с указанием результатов их формирования в процессе освоения образовательной программы, представлен в п.3 настоящей рабочей программы

5.2. Типовые контрольные вопросы и задания

- 1. Дайте определение объекта, образа и прецедента.
- 2. Приведите структурную схему системы распознавания образов.
- 3. Охарактеризуйте 3 способа минимизации среднего риска.
- 4. Дайте определение функционала риска.
- 5. Дайте определение функционала эмпирического риска.
- 6. Охарактеризуйте принцип минимизации эмпирического риска.
- 7. Дайте определение VC-измерения.
- 8. Охарактеризуйте понятие минимизации структурного риска.
- 9. Охарактеризуйте понятие вероятностно-корректной в смысле аппроксимации модели обучения.
- 10. Охарактеризуйте понятие байесовского классификатора.
- 11. Приведите структурные схемы байесовского классификатора на основе отношения правдоподобия и его логарифма.
- 12.Охарактеризуйте байесовский классификатор для Гауссовского распределения.
- 13.В чем заключаются сходство и различие персептрона и байесовского классификатора при решении задач классификации объектов.
- 14.Оптимальная гиперплоскость для линейно-разделимых образов.
- 15. Квадратичная оптимизация и поиск оптимальной гиперплоскости.

Применение множителей Лагранжа.

- 16.Статистические свойства оптимальной гиперплоскости для линейноразделимых образов.
- 17.Оптимальная гиперплоскость для неразделимых образов. Фиктивные переменные и множители Лагранжа.
- 18.В чем заключается идея машины опорных векторов для решения задачи распознавания образов?

- 19. Охарактеризуйте понятие ядра скалярного произведения.
- 20.Сформулируйте теорему Мерсера. Собственные функции и собственные значения.
- 21.Сформулируйте двойственную задачу условной оптимизации для машины опорных векторов.
- 22.Оптимальная селекция признаков.
- 23.Оптимальная селекция признаков на основе нейронной сети.

5.3. Фонд оценочных материалов

Полный перечень оценочных материалов представлен в приложении 1

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование помещений	Перечень основного оборудования
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения	Мультимедийное оборудование,
занятий лекционного и семинарского	специализированная мебель, наборы
типа, групповых и индивидуальных	демонстрационного оборудования и учебно-
консультаций, текущего контроля и	наглядных пособий, обеспечивающие
промежуточной аттестации	тематические иллюстрации.
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения	Мультимедийное оборудование,
занятий лекционного и семинарского	специализированная мебель, наборы
типа, групповых и индивидуальных	демонстрационного оборудования и учебно-
консультаций, текущего контроля и	наглядных пособий, обеспечивающие
промежуточной аттестации	тематические иллюстрации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно- образовательную среду
	организации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно- образовательную среду
	организации.

6.2. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Microsoft Windows. Договор №32009183466 от 02.07.2020 г. Microsoft Office. Договор №32009183466 от 02.07.2020 г.

6.3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

6.3.1. Основная литература

- 1. Мерков А.Б. Распознавание образов. Построение и обучение вероятностных моделей, М.: Изд-во Ленанд, 2014, 240 с.
- 2. Oudeweetering van de A., Improve Your Chess Pattern Recognition: Key Moves and Motifs in the Middlegame, New In Chess, Csi, 2014, 272 p.
- 3. Dougherty G. Pattern Recognition and Classification: An Introduction, Germany: Springer, 2012, 196 p.
- 4. Baggio D.L., Emami Sh., Escrivá D.M идр. Mastering OpenCV with Practical Computer Vision Projects, Birmingham, UK: Packt Publishing, 2012, 284 p.
- 5. Flach P. Machine Learning: The Art and Science of Algorithms that Make Sense of Data, England: Cambridge University Press, 2012, 409 p.
- 6. Михеева Е.Н. Управление качеством: учебник для вузов. М.: Дашков и К, 2012 532 с.
- 7. Басовский Л.Е., Протасьев В.Б. Управление качеством: Учебник для вузов. М.: Инфра-М. 2008 211 с.
- 8. Липаев В.В. Тестирование компонентов и комплексов программ. М.: Синтег, 2010 399 с.

6.3.2. Дополнительная литература

- 1. Майерс Гленфорд Дж. Искусство тестирования программ. М.: Финансы и статистика, 1982 176 с.
- 2. Бек К. Экстремальное программирование: разработка через тестирование. СПб.: Питер, 2003 224 с.
- 3. Винниченко И. В. Автоматизация процессов тестирования: производственно-практическое издание. СПб.: Питер, 2005 202 с.
- 4. Амблер С. Гибкие технологии: экстремальное программирование и унифицированный процесс разработки. СПб.: Питер, 2005 411 с.

6.4. РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ СОВРЕМЕННЫХ ПРОФЕССИОНАЛЬНЫХ БАЗ ЛАННЫХ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Электронная информационно-образовательная среда АНО ВО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. Режим доступа: http://edu.nwotu.ru/ Учебно-информационный центр АНО ВО "СЗТУ" [Электронный ресурс]. Режим доступа: http://lib.nwotu.ru:8087/jirbis2/
- 2. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
- 4. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН) [Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/
- 5. http://qai.narod.ru Генетические и нейроэволюционные алгоритмы.
- 6. http://raai.org Российская ассоциация искусственного интеллекта.
- 7. http://ransmv.narod.ru Российская ассоциация нечетких систем и мягких вычислений.

- 8. http://www.aiportal.ru/ Статьи и файлы по основным направлениям исследований в области искусственного интеллекта.
- 9. http://www.citforum.ru ИТБиблиотека on-line.
- 10. http://www.ifel.ru/library/29-fuzzyeconomics.html Консалтинговаясеть International Fuzzy Economic Lab (IFEL). Применение нечёткой логики в экономике.
- 11. http://www.makhfi.com/KCM intro.htm Введение в моделирование знаний
- 12. http://www.niisi.ru/iont/ni Российская ассоциация нейроинформатики.
- 13. http://www.osp.ru/titles Издательство «Открытые системы». Комплексная информационная поддержка профессионалов, отвечающих за построение масштабных компьютерных систем.

6.5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Самостоятельная работа студента направлена на подготовку к учебным занятиям и на развитие знаний, умений и навыков, предусмотренных программой дисциплины.

В соответствии с учебным планом дисциплина может предусматривать лекции, практические занятия и лабораторные работы, а также выполнение и защиту курсового проекта (работы). Успешное изучение дисциплины требует посещения всех видов занятий, выполнение заданий преподавателя и ознакомления с основной и дополнительной литературой. В зависимости от мероприятий, предусмотренных учебным планом и разделом 4, данной программы, студент выбирает методические указания для самостоятельной работы из приведённых ниже.

При подготовке к лекционным занятиям студентам необходимо: перед очередной лекцией необходимо просмотреть конспект материала предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях.

Практические занятия завершают изучение наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.

При подготовке к практическому занятию студенты имеют возможность воспользоваться консультациями преподавателя.

При подготовке к практическим занятиям студентам необходимо: приносить с собой рекомендованную преподавателем литературу к конкретному занятию; до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;

в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, заданных для самостоятельного решения; в ходе семинара давать конкретные, четкие ответы по существу вопросов;

на занятии доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.

Студентам, пропустившим занятия (независимо от причин), не имеющие письменного решения задач или не подготовившиеся к данному практическому занятию, рекомендуется не позже чем в 2-недельный срок явиться на консультацию к преподавателю и отчитаться по теме, изученную на занятии.

Методические указания необходимые для изучения и прохождения дисциплины приведены в составе образовательной программы

6.6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБУЧЕНИЮ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения лиц с OB3.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Оценка качества программного обеспечения Назначение оценочных материалов

Фонд оценочных материалов (ФОМ) создается в соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их учебных достижений поэтапным требованиям основной профессиональной образовательной программе (ОПОП) при проведении входного и текущего оценивания, а также промежуточной аттестации обучающихся. ФОС является составной частью нормативно-методического обеспечения системы оценки качества освоения ОПОП ВО, входит в состав ОПОП.

Фонд оценочных материалов – комплект методических материалов, нормирующих процедуры оценивания результатов обучения, т.е. установления соответствия учебных достижений запланированным результатам обучения и требованиям образовательных программ, рабочих программ модулей (дисциплин).

Фонд оценочных материалов сформирован на основе ключевых принципов оценивания:

- валидности: объекты оценки должны соответствовать поставленным целям обучения;
- надежности: использование единообразных стандартов и критериев для оценивания достижений;
- объективности: разные студенты должны иметь равные возможности добиться успеха.

Основными параметрами и свойствами ФОМ являются:

- предметная направленность (соответствие предмету изучения конкретной учебной дисциплины);
- содержание (состав и взаимосвязь структурных единиц, образующих содержание теоретической и практической составляющих учебной дисциплины);
 - объем (количественный состав оценочных средств, входящих в ФОМ);
- качество оценочных средств и ФОМ в целом, обеспечивающее получение объективных и достоверных результатов при проведении контроля с различными целями.

Целью ФОМ является проверка сформированности у студентов компетенций:

Карта компетенций

Контролируемые компетенции	Планируемый результат обучения		
ПК-3.1 - Ставит задачи по разработке или	Знать: классы методов и алгоритмов		
совершенствованию методов и алгоритмов	машинного обучения.		
для решения комплекса задач предметной	Уметь: ставить задачи и разрабатывать		
области.	новые методы и алгоритмы машинного		
	обучения.		
ПК-3.2 - Руководит исследовательской	Знать: методы и критерии оценки качества		
группой по разработке или	моделей машинного обучения.		
совершенствованию методов и алгоритмов	Уметь: определять критерии и метрики		
для решения комплекса задач предметной	оценки результатов моделирования при		
области.	построении систем искусственного		
	интеллекта в исследуемой области		

Матрица компетентностных задач по дисциплине

Матрица компетентностных заоач по оисциплине					
Контролируемые блоки(темы)	Контролируемые	Оценочные средства			
дисциплины	компетенции (или их				
	части)				
Тема 1. Модели жизненного	ПК-3.1; ПК-3.2	Практические задания			
цикла ПО		Лабораторные работы			
		Вопросы для самостоятельного			
		контроля знаний студентов			
		Вопросы и задания для			
		домашней работы			
Тема 2. Модели и стандарты	ПК-3.1; ПК-3.2	Практические задания			
качества ПО		Лабораторные работы			
		Вопросы для самостоятельного			
		контроля знаний студентов			
		Вопросы и задания для			
		домашней работы			
Тема 3. Основные понятия	ПК-3.1; ПК-3.2	Практические задания			
надежности ПО		Лабораторные работы			
		Вопросы для самостоятельного			
		контроля знаний студентов			
		Вопросы и задания для			
		домашней работы			
Тема 4. Тестирование ПО	ПК-3.1; ПК-3.2	Практические задания			
		Лабораторные работы			
		Вопросы для самостоятельного			
		контроля знаний студентов			
		Вопросы и задания для			
		домашней работы			
Тема 5. Основы эргономического	ПК-3.1; ПК-3.2	Практические задания			
обеспечения разработки ПО		Лабораторные работы			
		Вопросы для самостоятельного			
		контроля знаний студентов			
		Вопросы и задания для			
		домашней работы			

Оценочные средства <u>Текущий контроль</u>

Целью текущего контроля знаний является установление подробной, реальной картины студенческих достижений и успешности усвоения ими учебной программы на данный момент времени. В условиях рейтинговой системы контроля результаты текущего оценивания студента используются как показатель его текущего рейтинга.

Текущий контроль успеваемости осуществляется в течение семестра, в ходе повседневной учебной работы по индивидуальной инициативе преподавателя. Данный вид контроля стимулирует у студентов стремление к систематической самостоятельной работе по изучению дисциплины.

Описание видов практических занятий, предусмотренных РПД Выполнение практических заданий

Практические задания выдаются студентам с целью применения полученных знаний на практике под руководством преподавателя. Практические задания могут быть

представлены в виде решения задач, проблемных заданий, тренингов и иных видах, направленных на получение практических знаний

Лабораторные работы выполняются под руководством преподавателя.

Описание видов самостоятельной работы, предусмотренных РПД Подготовка к аудиторным занятиям

Подготовка к аудиторным занятиям состоит из изучения материала по соответствующей теме и ответов на вопросы для самоконтроля. Проверка уровня подготовки студентов к занятиям может проводится устным опросом, тестом, контрольной работой или иными видами текущего контроля.

Выполнение домашнего задания

Домашнее задание, как правило состоит из нескольких вопросов и заданий. Домашняя контрольная работа выполняется студентом самостоятельно не во время аудиторных занятий и имеет своей целью проверить текущий уровень формирования компетенций

Задания для текущего контроля

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и(или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Оценка знаний, умений и навыков в процессе изучения дисциплины производится с использованием фонда оценочных средств.

5.1. Типовой вариант задания на контрольную работу

- Разработать экспертную систему учета посещаемости студентов группы ВУЗа.
- Построить нейронную сеть распознавания 2-х букв алфавита.
- Построить нейронную сеть принятия решения, что делать после 18-00 в выходные.
- Разработать нечётко-логическую схему распознавания уровня финансового показателя.

5.2. Вопросы для зачета

- 1 Основные обязанности тестировщика.
- 2 Основные понятия, цели и задачи тестирования ПО
- 3 Верификация и валидация ПО.
- 4 Дефекты. Их жизненный цикл. Системы учета дефектов.
- 5 Тестирование методом белого и черного ящика.
- 6 Тестирование спецификаций и требований, описание, характеристики
- 7 Методы тестирования. Граничные значения, способы применения.
- 8 Методы тестирования. Классы эквивалентности, способы применения.
- 9 Методы тестирования. Парное тестирование, способы применения.
- 10 Анализ покрытия программного кода.
- 11 Уровни покрытия программного кода.
- 12 Модульное тестирование.
- 13 Интеграционное тестирование.
- 14 Регрессионное тестирование.
- 15 Интеграционное тестирование, его разновидности.
- 16 Жизненный цикл разработки программного обеспечения.
- 17 Модели жизненного цикла.
- 18 Методологии разработки ПО.
- 19 Метрики качества ПО.
- 20 Критерии завершения тестирования.
- 21 Критерии оценки полноты тестового набора.
- 22 Автоматизированное тестирование.

- 23 Типичные уязвимости, встречающиеся в web- приложениях.
- 24 Тестирование удобства использования. (Usability).
- 25 Нагрузочное тестирование
- 26 Тестирование защищенности, безопасности, устойчивости
- 27 Тестирование безопасности Web приложений
- 28 Тестирование удобства использования
- 29 Инструментальные средства поддержки
- 30 Тестовая документация, правила и порядок ее составления.

5.3. Тестовые задания

- 1.К уровням тестирования относятся:
- •модульное
- •интеграционное
- •прикладное
- •организационное
- 2.К видам тестирования относятся:
- функциональное
- нагрузочное
- формальное
- рекуррентное
- 3.К тестовым метрикам относятся:
- •покрытие функциональных требований
- •покрытие множества сценариев
- •количество или плотность найденных дефектов
- •количество тестировщиков, участвующих в процессе тестирования
- 4. Минимальный элемент процесса тестирования это:
- тест-кейс
- чек-лист
- тест-план
- -тест-шаг
- 5.К моделям жизненного цикла ИС относятся:
- каскадная
- спиральная
- структурная
- итерационная
 - 6. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 6.1.Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписанию занятий или в установленное деканатом время.
- 6.2.Студент информируется о результатах текущей успеваемости.
- 6.3.Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
- 6.4. Производится идентификация личности студента.
- 6.5.Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
- 6.6. Тест закрывается студентом лично по завершении тестирования или автоматически по истечении времени тестирования.