Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Баламирзоев Назим Лиодинович

Должность: Ректор

Дата подписания: 31.10.2025 15:08:50 Уникальный программный ключ:

5cf0d6f89e80f49a334f6a4ba58e91f3326b9926

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Институт комплексной безопасности и специального приборостроения

Региональный партнер ФГБОУ ВО «Дагестанский государственный технический университет»

			УТВЕРЖДАЮ
]	Врио рект	ора Ф	ГБОУ ВО «ДГТУ»
			_ Н.Л. Баламирзоев
	«	>>	2022 г.

Рабочая программа дисциплины (модуля) **Б1.В.02** Прикладной искусственный интеллект

Читающее подразделение

Направление 09.04.04 Программная инженерия

Направленность Системы искусственного интеллекта

Квалификация магистр

Форма обучения очная, очно-заочная, заочная

Общая трудоемкость 6 з.е.

Распределение часов дисциплины и форм промежуточной аттестации по семестрам

		Распределение часов							
Семестр	Зачётные единицы	Beero	Лекции	Лабораторные	Практические	Самостоятельная работа	Контактная работа в период практики и (или) аттестации	Контроль	Формы промежуточной аттестации
3	6	216	17	34	17	145.75	2,25	0	Зачет, КР
4	6	216	9	17	9	181	0	0	Зачет, КР
4	6	216	6	12	6	188	0	4	Зачет, КР

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина «Прикладной искусственный интеллект» имеет своей целью способствовать формированию у обучающихся компетенций предусмотренных данной рабочей программой в соответствии с требованиями ФГОС ВО по направлению подготовки 09.04.04 Программная инженерия с учетом специфики направленности подготовки – «Системы искусственного интеллекта». Целями освоения дисциплины «Прикладной искусственный интеллект» являются: - ознакомление студентов с моделями искусственного интеллекта (ИИ), с возможностями интеллектуальных систем и путях применения данных технологий при решении прикладных задач в различных областях, и прежде всего при создании интеллектуальных систем управления технологическим процессом развитие способности самостоятельно осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, составлять аналитические обзоры и научно-технические отчеты по результатам выполненной работы представлять полученную информацию И в требуемом формате для разработки интеллектуальной системы управления (ИСУ).

2.МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Направление: 09.04.04 Программная инженерия Направленность: Системы искусственного интеллекта

Блок:Дисциплины (модули)Часть:Вариативная частьОбщая трудоемкость:6 з.е. (216 акад. час.).

3.КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины обучающийся должен овладеть компетенциями:

- ПК-1.1. Исследует и разрабатывает архитектуры систем искусственного интеллекта для различных предметных областей
- ПК-1.2. Выбирает комплексы методов и инструментальных средств искусственного интеллекта для решения задач в зависимости от особенностей предметной области
- ПК-1.3. Разрабатывает единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения, а также определяет критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях улучшения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта
- ПК-2.1. Разрабатывает программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.
- ПК-2.2. Модернизирует программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.
- ПК-3.3. Разрабатывает унифицированные и обновляемые методологии описания сбора и разметки данных, а также механизмы контроля за соблюдением указанных методологий.

- ПК-4.1. Руководит работами по оценке и выбору моделей искусственных нейронных сетей и инструментальных средств для решения поставленной задачи
- ПК-4.2. Руководит созданием систем искусственного интеллекта на основе моделей искусственных нейронных сетей и инструментальных средств.
- ПК-4.3. Руководит проектами по разработке систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов
- ПК-5.2. Осуществляет руководство созданием комплексных систем искусственного интеллекта с применением новых методов и алгоритмов машинного обучения.
- ПК-6.2. Проводит экспериментальную проверку работоспособности систем искусственного интеллекта.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ХАРАКТЕРИЗУЮЩИЕ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

ПК-1.1. Исследует и разрабатывает архитектуры систем искусственного интеллекта для различных предметных областей.

Знать: архитектурные принципы построения систем искусственного интеллекта, методы декомпозиции основных подсистем (компонентов) и реализации их взаимодействия на основе методологии предметно-ориентированного проектирования.

Уметь: выстраивать архитектуру системы искусственного интеллекта, осуществлять декомпозицию основных подсистем (компонентов) и реализации их взаимодействия на основе методологии предметно-ориентированного проектирования.

ПК-1.2. Выбирает комплексы методов и инструментальных средств искусственного интеллекта для решения задач в зависимости от особенностей предметной области.

Знать: методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и методы комплексирования в рамках создания интегрированных гибридных интеллектуальных систем различного назначения.

Уметь: выбирать, применять и интегрировать методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и методы комплексирования в рамках создания интегрированных гибридных интеллектуальных систем различного назначения.

ПК-1.3. Разрабатывает единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения, а также определяет критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях улучшения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта.

Знать: единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения технологий и систем искусственного интеллекта;

- методики определения критериев сопоставления программного обеспечения и критериев эталонных открытых тестовых сред (условий).

Уметь: применять и разрабатывать единые стандарты в области безопасности (в том числе отказоустойчивости) и совместимости программного обеспечения, эталонных архитектур вычислительных систем и программного обеспечения технологий и систем искусственного интеллекта;

-определять критерии сопоставления программного обеспечения и критерии эталонных открытых тестовых сред (условий) в целях определения качества и эффективности программного обеспечения технологий и систем искусственного интеллекта.

ПК-2.1. Разрабатывает программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.

Знать: новые научные принципы и методы разработки программного и аппаратного обеспечения технологий и систем искусственного интеллекта для решения профессиональных задач в различных предметных областях.

Уметь: разрабатывать программное и аппаратное обеспечение технологий и систем искусственного интеллекта с учетом требований информационной безопасности для решения профессиональных задач в различных предметных областях.

ПК-2.2. Модернизирует программное и аппаратное обеспечение технологий и систем искусственного интеллекта для решения профессиональных задач с учетом требований информационной безопасности в различных предметных областях.

Знать: особенности модернизации программного и аппаратного обеспечения технологий и систем искусственного интеллекта для решения профессиональных задач в различных предметных областях.

Уметь: Умеет модернизировать программное и аппаратное обеспечение технологий и систем искусственного интеллекта с учетом требований информационной безопасности для решения профессиональных задач в различных предметных областях.

ПК-3.3. Разрабатывает унифицированные и обновляемые методологии описания, сбора и разметки данных, а также механизмы контроля за соблюдением указанных методологий.

Знать: унифицированные и обновляемые методологии описания, сбора и разметки данных, а также механизмы контроля за соблюдением указанных методологий.

Уметь: разрабатывать унифицированные и обновляемые методологии описания, сбора и разметки данных, а также механизмы контроля за соблюдением указанных методологий.

ПК-4.1. Руководит работами по оценке и выбору моделей искусственных нейронных сетей и инструментальных средств для решения поставленной задачи ПК-4.2. Осуществляет руководство созданием комплексных систем искусственного интеллекта с применением новых методов и алгоритмов машинного обучения.

Знать: функциональность современных инструментальных средств и систем программирования в области создания.

Уметь: проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения;

- применять современные инструментальные средства и системы программирования для разработки и обучения моделей искусственных нейронных сетей.

ПК-4.2. Руководит созданием систем искусственного интеллекта на основе моделей искусственных нейронных сетей и инструментальных средств.

Знать: Знает функциональность современных инструментальных средств и систем программирования в области создания моделей и методов машинного обучения;

- принципы построения систем искусственного интеллекта, методы и подходы к планированию и реализации проектов по созданию систем искусственного интеллекта.

Уметь: применять современные инструментальные средства и системы программирования для разработки новых методов и моделей машинного обучения;

- руководить выполнением коллективной проектной деятельности для создания, поддержки и использования систем искусственного интеллекта.

ПК-4.3. Руководит проектами по разработке систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов.

Знать: принципы построения моделей глубоких нейронных сетей и глубокого машинного обучения (с подкреплением и без);

- подходы к применению моделей на основе нечеткой логики в системах искусственного интеллекта.

Уметь: руководить выполнением коллективной проектной деятельности для создания, поддержки и использования систем искусственного интеллекта на основе моделей глубоких нейронных сетей и нечетких моделей и методов.

ПК-5.2. Осуществляет руководство созданием комплексных систем искусственного интеллекта с применением новых методов и алгоритмов машинного обучения.

Знать: методологию и принципы руководства проектом по созданию, поддержке и использованию комплексных систем на основе аналитики больших данных;

- специфику сфер и отраслей, для которых реализуется проект по аналитике больших данных.

Уметь: решать задачи по руководству коллективной проектной деятельностью для создания, поддержки и использования комплексных систем на основе аналитики больших данных:

- сосредотачивать внимание на целях, достижение которых обеспечивает большую отдачу и сильное воздействие;
- формировать матрицу приоритетов, включая критерии отбора проектов для реализации.

ПК-6.2. Проводит экспериментальную проверку работоспособности систем искусственного интеллекта.

Знать: методы постановки задач, проведения и анализа тестовых и экспериментальных испытаний работоспособности систем искусственного интеллекта.

Уметь: ставить задачи и проводить тестовые и экспериментальные испытания работоспособности систем искусственного интеллекта анализировать результаты и вносить изменения.

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ОБУЧАЮЩИЙСЯ ДОЛЖЕН

В результате изучения дисциплины студент должен:

Знать:

- о знаниях, методах их получения, представления, хранения и обработки;
- об искусственном интеллекте как научном направлении и о решаемых здесь задачах; о возможностях технологии экспертных и интеллектуальных систем и путях применения данных технологий в различных областях; основные модели и методы искусственного интеллекта;
- принципы построения и методы разработки экспертных и интеллектуальных системУметь:
- самостоятельно осуществить поиск, хранение, обработку и анализ информации из различных источников и баз данных строить формализованную модель предметной области;
- выбирать язык представления знаний формировать структуру интеллектуальной системы;
- составить аналитический обзор и научно-технический отчет по результатам выполненной работы.

Влалеть:

- методикой формирования экспертной и интеллектуальной системы языком программирования ПРОЛОГ как средством разработки интеллектуальных систем.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

При проведении учебных занятий организация обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений и лидерских качеств.

№	Наименование разделов и тем /вид	Сем.	Часов	Компетенции
	занятия/			
	Введение в интеллектуальные системы и те		1	
1	Лекция №1. Введение. Предмет и методы научного направления «Прикладной искусственный интеллект»	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2
2	Практическое занятие №1 Типовые (основные) модели представления знаний: логические, продукционные, фреймовые и сетевые модели.	3	2	
3	Лабораторная работа №1	3	4	
4	Подготовка к аудиторным занятиям (Ср)	3	8	
5	Лекция №2. Основные отношения, принятые в данной модели; способы вывода в семантических сетях.	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2;
6	Практическое занятие №2 Механизмы вывода в функциональной семантической сети	3	2	ПК-6.2
7	Лабораторная работа №2	3	4	
8	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
9	Лекция №3. Продукционная модель представления знаний: продукционное правило. Структура продукционной системы; способы получения вывода в системе: прямая и обратная волна; способы визуального представления правил и процедур вывода в продукционных системах.	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2
10	Практическое занятие №3 Представление процедуры вывода в виде графа и дерева «И/ИЛИ»; конфликтный набор и способы разрешения конфликтов в продукционных системах в зависимости от типа вывода	3	2	
11	Лабораторная работа №3	3	4	
12	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
	Формализация и модели представления знаний	3		

13	Лекция №4. Фреймовая модель представления знаний: фрейм	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2;
14	Практическое занятие №4 Структура фрейма; способы вывода во фреймовых системах, условия запуска демонов и присоединенных процедур.	3	2	ПК-4.3; ПК-5.2; ПК-6.2
15	Лабораторная работа №4	3	4	
16	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
17	Лекция №5. Ненадежные и нечеткие знания. Использование метода разбиения сложных задач на подзадачи с использованием дерева И-ИЛИ-КОМБ.	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2
18	Практическое занятие №5 Способы вычисления степени надежности знаний в процессе вывода. Метод MYCIN;	3	2	
19	Лабораторная работа №5	3	4	
20	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	2	
21	Лекция №6. Язык программирование Пролог. Простейшие Пролог-программы. Термы	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2;
22	Практическое занятие №6 Переменные и константы. Сложные термы. Поиск решения	3	2	ПК-4.3; ПК-5.2; ПК-6.2
23	Лабораторная работа №6	3	4	
24	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
25	Лекция №7. Структура и разработчики экспертных систем. Основные функции экспертных систем.	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2;
26	Практическое занятие №7 Рекурсия и итерация. Отсечение. Метод «образовать и проверить». Циклы и повторения	3	2	ПК-4.3; ПК-5.2; ПК-6.2
27	Лабораторная работа №7	3	4	_
28	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
29	Лекция №8. Понятие гибридности. История развития гибридных экспертных систем. Существующие гибридные экспертные системы.	3	2	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2

30	Практическое занятие №8 Технология разработки экспертных систем с помощью языка логического программирования Пролог	3	2	
31	Лабораторная работа №8	3	4	
32	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	8	
33	Лекция №9. Нейронная сеть. Биологические основы функционирования нейрона. Первые модели нейронной сети. Модель нервной клетки по МакКаллоку-Питсу.	3	1	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2
34	Практическое занятие №9 Прикладные возможности нейронных сетей. Однослойная сеть. Персептон.	3	1	
35	Лабораторная работа №9	3	2	
36	Подготовка к аудиторным занятиям и выполнение домашнего задания (Ср).	3	10	
37	Промежуточная аттестация (экзамен)			
38	Подготовка к сдаче промежуточной аттестации (Экзамен)	3	33,75	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2
39	Контактная работа с преподавателем в период промежуточной аттестации (КрПА).	3	2,25	ПК-1.1; ПК-1.2; ПК-1.3; ПК-2.1; ПК-2.2; ПК-3.3; ПК-4.1; ПК-4.2; ПК-4.3; ПК-5.2; ПК-6.2

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

5.1. Перечень компетенций

Перечень компетенций, на освоение которых направлено изучение дисциплины «Прикладной искусственный интеллект», с указанием результатов их формирования в процессе освоения образовательной программы, представлен в п.3 настоящей рабочей программы

5.2. Типовые контрольные вопросы и задания

- 1. Сетевые модели представления знаний: семантическая сеть. ТLС-модель.
- 2. Основные отношения, принятые в данной модели; способы вывода в семантических сетях.

- 3. Механизм наследования; механизм вывода, основанный на построении подсети, соответствующей вопросу, и сопоставлении ее с базой знаний; перекрестный поиск; функциональная семантическая сеть.
- 4. Механизмы вывода в функциональной семантической сети, основанные на распространяющихся волнах и паросочетаниях.
- 5. Продукционная модель представления знаний: продукционное правило.
- 6. Структура продукционной системы; способы получения вывода в системе: прямая и обратная волна.
- 7. Способы визуального представления правил и процедур вывода в продукционных системах.
- 8. Представление процедуры вывода в виде графа и дерева «И/ИЛИ»; конфликтный набор и способы разрешения конфликтов в продукционных системах в зависимости от типа вывода.
- 9. Фреймовая модель представления знаний: фрейм.
- 10. Структура фрейма; способы вывода во фреймовых системах, условия запуска демонов и присоединенных процедур.

5.3. Фонд оценочных материалов

Полный перечень оценочных материалов представлен в приложении 1

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование помещений	Перечень основного оборудования
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения занятий	Мультимедийное оборудование,
лекционного и семинарского типа,	специализированная мебель, наборы
групповых и индивидуальных	демонстрационного оборудования и
консультаций, текущего контроля и	учебно- наглядных пособий,
промежуточной аттестации	обеспечивающие тематические
	иллюстрации.
Компьютерный класс	Компьютерная техника с возможностью
	подключения к сети «Интернет»,
	мультимедийное оборудование,
	специализированная мебель.
Учебная аудитория для проведения занятий	Мультимедийное оборудование,
лекционного и семинарского типа,	специализированная мебель, наборы
групповых и индивидуальных	демонстрационного оборудования и
консультаций, текущего контроля и	учебно- наглядных пособий,
промежуточной аттестации	обеспечивающие тематические
	иллюстрации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную

	информационно- образовательную среду
	организации.
Помещение для самостоятельной работы	Компьютерная техника с возможностью
обучающихся	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно- образовательную среду
	организации.

6.2. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

MicrosoftWindows. Договор №32009183466 от 02.07.2020 г. Microsoft Office. Договор №32009183466 от 02.07.2020 г.

6.3. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

6.3.1. Основная литература

- 1. Болотова, Л. С. Системы искусственного интеллекта: модели и технологии, основанные на знаниях [Текст]: учебник для вузов / Л.С. Болотова. Министерство образования и науки Российской Федерации, Российский государственный университет инновационных и предпринимательства, Государственный научно-исследовательский институт информационных технологий и телекоммуникаций "Информатика". - М.: Финансы и статистика, 2012. - 664 с (наличие в библиотеке ТУСУР - 15 экз.).
- 2. Хабибулина Н.Ю. Электронный курс "Прикладные методы искусственного интеллекта" [Электронный ресурс] - http://kcup1012.gpo.kcup.tusur.ru/moodle/course/view.php?id=15

6.3.2. Дополнительная литература

Дополнительная литература

- 1. Абрамов, И. А. Программирование на языке Пролог [Текст]: учебное пособие / И. А.Абрамов; Пензенский государственный педагогический университет им. В. Г. Белинского (Пенза).- Пенза: ПГПУ, 2011. - 116 с.
- 2. Зюзьков, В.М. Искусственный интеллект: Учебное пособие. / В.М. Зюзьков. Томск: НТЛ. 2007. – 152 с.
- 3. Зюзьков, В.М. Логическое программирование: учебное пособие / В. М. Зюзьков. 2-е изд., перераб. и доп. - Томск: Издательство Томского университета, 2007. – 142с.
- 4. Андрейчиков, А. В Интеллектуальные информационные системы: Учебник для вузов / А. В. Андрейчиков, О. Н. Андрейчикова. - М.: Финансы и статистика, 2006. - 423 с.
- 5. Советов, Борис Яковлевич. Представление знаний в информационных системах:
- учебник для вузов. М.: Академия, 2011. 144 с.

6.4. РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ СОВРЕМЕННЫХ ПРОФЕССИОНАЛЬНЫХ БАЗ ДАННЫХ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

1. Электронная информационно-образовательная среда АНО ВО "СЗТУ" (ЭИОС СЗТУ) [Электронный ресурс]. - Режим доступа: http://edu.nwotu.ru/ Учебноинформационный центр АНО ВО "СЗТУ" [Электронный ресурс]. - Режим доступа: http://lib.nwotu.ru:8087/jirbis2/

- 2. Электронно-библиотечная система IPRbooks [Электронный ресурс]. Режим доступа: http://www.iprbookshop.ru/
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]. Режим доступа: http://window.edu.ru/
- 4. Информационная системы доступа к электронным каталогам библиотек сферы образования и науки (ИС ЭКБСОН) [Электронный ресурс]. Режим доступа: http://www.vlibrary.ru/
- 5. http://qai.narod.ru Генетические и нейроэволюционные алгоритмы.
- 6. http://raai.org Российская ассоциация искусственного интеллекта.
- 7. http://ransmv.narod.ru Российская ассоциация нечетких систем и мягких вычислений.
- 8. http://www.aiportal.ru/ Статьи и файлы по основным направлениям исследований в области искусственного интеллекта.
- 9. http://www.citforum.ru ИТБиблиотека on-line.
- 10. http://www.ifel.ru/library/29-fuzzyeconomics.html Консалтинговаясеть International Fuzzy Economic Lab (IFEL). Применение нечёткой логики в экономике.
- 11. http://www.makhfi.com/KCM_intro.htm Введение в моделирование знаний
- 12. http://www.niisi.ru/iont/ni Российская ассоциация нейроинформатики.
- 13. http://www.osp.ru/titles Издательство «Открытые системы». Комплексная информационная поддержка профессионалов, отвечающих за построение масштабных компьютерных систем.

6.5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Самостоятельная работа студента направлена на подготовку к учебным занятиям и на развитие знаний, умений и навыков, предусмотренных программой дисциплины.

В соответствии с учебным планом дисциплина может предусматривать лекции, практические занятия и лабораторные работы, а также выполнение и защиту курсового проекта (работы). Успешное изучение дисциплины требует посещения всех видов занятий, выполнение заданий преподавателя и ознакомления с основной и дополнительной литературой. В зависимости от мероприятий, предусмотренных учебным планом и разделом 4, данной программы, студент выбирает методические указания для самостоятельной работы из приведённых ниже.

При подготовке к лекционным занятиям студентам необходимо: перед очередной лекцией необходимо просмотреть конспект материала предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях.

Практические занятия завершают изучение наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.

При подготовке к практическому занятию студенты имеют возможность воспользоваться консультациями преподавателя.

При подготовке к практическим занятиям студентам необходимо: приносить с собой рекомендованную преподавателем литературу к конкретному занятию; до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;

в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, заданных для самостоятельного решения; в ходе семинара давать конкретные, четкие ответы по существу вопросов;

на занятии доводить каждую задачу до окончательного решения, демонстрировать понимание проведенных расчетов (анализов, ситуаций), в случае затруднений обращаться к преподавателю.

Студентам, пропустившим занятия (независимо от причин), не имеющие письменного решения задач или не подготовившиеся к данному практическому занятию, рекомендуется не позже чем в 2-недельный срок явиться на консультацию к преподавателю и отчитаться по теме, изученную на занятии.

Методические указания необходимые для изучения и прохождения дисциплины приведены в составе образовательной программы.

6.6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБУЧЕНИЮ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Медиаматериалы также следует использовать и адаптировать с учетом индивидуальных особенностей обучения лиц с OB3.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ **Прикладной искусственный интеллект**

Назначение оценочных материалов

Фонд оценочных материалов (ФОМ) создается в соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их учебных достижений поэтапным требованиям основной профессиональной образовательной программе (ОПОП) при проведении входного и текущего оценивания, а также промежуточной аттестации обучающихся. ФОС является составной частью нормативно-методического обеспечения системы оценки качества освоения ОПОП ВО, входит в состав ОПОП.

Фонд оценочных материалов – комплект методических материалов, нормирующих процедуры оценивания результатов обучения, т.е. установления соответствия учебных достижений запланированным результатам обучения и требованиям образовательных программ, рабочих программ модулей (дисциплин).

Фонд оценочных материалов сформирован на основе ключевых принципов оценивания:

- валидности: объекты оценки должны соответствовать поставленным целям обучения;
- надежности: использование единообразных стандартов и критериев для оценивания достижений;
- объективности: разные студенты должны иметь равные возможности добиться успеха.

Основными параметрами и свойствами ФОМ являются:

- предметная направленность (соответствие предмету изучения конкретной учебной дисциплины);
- содержание (состав и взаимосвязь структурных единиц, образующих содержание теоретической и практической составляющих учебной дисциплины);
 - объем (количественный состав оценочных средств, входящих в ФОМ);
- качество оценочных средств и ФОМ в целом, обеспечивающее получение объективных и достоверных результатов при проведении контроля с различными целями.

Целью ФОМ является проверка сформированности у студентов компетенций:

Карта компетенций Планируемый результат обучения Контролируемые компетенции ПК-1.1. Исследует и разрабатывает Знать: архитектурные принципы построения систем искусственного интеллекта, методы архитектуры систем искусственного интеллекта для различных предметных декомпозиции основных подсистем областей. (компонентов) и реализации их взаимодействия основе методологии предметноориентированного проектирования. Уметь: выстраивать архитектуру системы искусственного интеллекта, осуществлять декомпозицию подсистем основных (компонентов) и реализации их взаимодействия основе методологии предметноориентированного проектирования. ПК-1.2. Выбирает комплексы методов и Знать: методы и инструментальные средства инструментальных средств систем искусственного интеллекта, критерии их искусственного интеллекта ДЛЯ выбора и методы комплексирования в рамках создания интегрированных гибридных решения задач зависимости

особенностей предметной области. интеллектуальных систем различного назначения. Уметь: выбирать, применять и интегрировать методы и инструментальные средства систем искусственного интеллекта, критерии их выбора и методы комплексирования в рамках создания интегрированных гибридных интеллектуальных систем различного назначения. ПК-1.3. Разрабатывает Знать: единые стандарты области единые стандарты в области безопасности (в безопасности (в том числе отказоустойчивости) том числе отказоустойчивости) и совместимости программного обеспечения, программного эталонных архитектур вычислительных систем совместимости и программного обеспечения технологий и обеспечения. архитектур эталонных вычислительных систем искусственного интеллекта; программного обеспечения, а также методики определения критериев сопоставления программного обеспечения и определяет критерии сопоставления программного обеспечения и критерии критериев эталонных открытых тестовых сред эталонных открытых тестовых сред (условий). (условий) в целях улучшения качества и Уметь: применять и разрабатывать единые эффективности программного стандарты в области безопасности (в том числе отказоустойчивости) обеспечения технологий И систем И совместимости обеспечения, искусственного интеллекта. программного эталонных архитектур систем вычислительных И обеспечения программного технологий систем искусственного интеллекта; -определять критерии сопоставления программного обеспечения критерии эталонных открытых тестовых сред (условий) в целях определения качества и эффективности программного обеспечения технологий систем искусственного интеллекта. ПК-2.1. Разрабатывает программное и Знать: новые научные принципы и методы аппаратное обеспечение технологий и разработки программного И аппаратного систем искусственного интеллекта для обеспечения технологий И систем решения профессиональных задач с искусственного интеллекта решения для учетом требований информационной профессиональных различных В задач безопасности в различных предметных предметных областях. областях. разрабатывать программное аппаратное обеспечение технологий и систем искусственного интеллекта требований информационной безопасности для решения профессиональных задач в различных предметных областях. ПК-2.2. Модернизирует программное и Знать: особенности модернизации аппаратное обеспечение технологий и обеспечения программного аппаратного И систем искусственного интеллекта для искусственного технологий систем решения профессиональных задач с интеллекта для решения профессиональных учетом требований информационной задач в различных предметных областях. безопасности в различных предметных Уметь: Умеет модернизировать программное и аппаратное обеспечение технологий и систем областях. искусственного интеллекта

требований информационной безопасности для

	1
	решения профессиональных задач в различных предметных областях.
ПК-3.3. Разрабатывает	Знать: унифицированные и обновляемые
унифицированные и обновляемые	методологии описания, сбора и разметки
методологии описания, сбора и	данных, а также механизмы контроля за
разметки данных, а также механизмы	соблюдением указанных методологий.
контроля за соблюдением указанных	Уметь: разрабатывать унифицированные и
методологий.	обновляемые методологии описания, сбора и
	разметки данных, а также механизмы контроля
	за соблюдением указанных методологи
ПК-4.1. Руководит работами по оценке	программирования в области создания.
и выбору моделей искусственных	Уметь: проводить оценку и выбор моделей
нейронных сетей и инструментальных	искусственных нейронных сетей и
средств для решения поставленной	инструментальных средств для решения задач
	машинного обучения;
1 , ,	•
руководство созданием комплексных	- применять современные инструментальные
систем искусственного интеллекта с	средства и системы программирования для
применением новых методов и	разработки и обучения моделей искусственных
алгоритмов машинного обучения.	нейронных сетей.
ПК-4.2. Осуществляет руководство	Знать: Знает функциональность современных
созданием комплексных систем	инструментальных средств и систем
искусственного интеллекта с	программирования в области создания моделей
применением новых методов и	и методов машинного обучения;
алгоритмов машинного обучения.	- принципы построения систем искусственного
	интеллекта, методы и подходы к планированию
	и реализации проектов по созданию систем
	искусственного интеллекта.
	Уметь: применять современные
	инструментальные средства и системы
	программирования для разработки новых
	методов и моделей машинного обучения;
	- руководить выполнением коллективной
	проектной деятельности для создания,
	поддержки и использования систем
	искусственного интеллекта.
ПК-4.3. Руководит проектами по	Знать: принципы построения моделей глубоких
разработке систем искусственного	нейронных сетей и глубокого машинного
интеллекта на основе моделей глубоких	обучения (с подкреплением и без);
нейронных сетей и нечетких моделей и	- подходы к применению моделей на основе
методов.	нечеткой логики в системах искусственного
	интеллекта.
	Уметь: руководить выполнением коллективной
	проектной деятельности для создания,
	поддержки и использования систем
	искусственного интеллекта на основе моделей
	глубоких нейронных сетей и нечетких моделей
	и методов.
ПК-5.2. Осуществляет руководство	Знать: методологию и принципы руководства
созданием комплексных систем	1
искусственного интеллекта с	использованию комплексных систем на основе
применением новых методов и	аналитики больших данных;
алгоритмов машинного обучения.	- специфику сфер и отраслей, для которых

	реализуется проект по аналитике больших данных. Уметь: решать задачи по руководству коллективной проектной деятельностью для создания, поддержки и использования комплексных систем на основе аналитики больших данных; - сосредотачивать внимание на целях, достижение которых обеспечивает большую отдачу и сильное воздействие; - формировать матрицу приоритетов, включая критерии отбора проектов для реализации.
ПК-6.2. Проводит экспериментальную проверку работоспособности систем искусственного интеллекта.	Знать: методы постановки задач, проведения и анализа тестовых и экспериментальных испытаний работоспособности систем искусственного интеллекта. Уметь: ставить задачи и проводить тестовые и экспериментальные испытания работоспособности систем искусственного интеллекта анализировать результаты и вносить изменения.

Матрица компетентностных задач по дисциплине

	эмпетентностных заоач	по опсциплине
Контролируемые блоки (темы)	Контролируемые	Оценочные средства
дисциплины	компетенции (или их	
	части)	
Тема 1	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
Введение. Предмет и методы	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
научного направления	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
«Прикладной искусственный	ПК-5.2; ПК-6.2	самостоятельного контроля
интеллект»		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 2.	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
Основные отношения, принятые	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
в данной модели; способы	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
вывода в семантических сетях.	ПК-5.2; ПК-6.2	самостоятельного контроля
		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 3.	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
Продукционная модель	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
представления знаний:	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
продукционное правило.	ПК-5.2; ПК-6.2	самостоятельного контроля
Структура продукционной		знаний студентов
системы; способы получения		Вопросы и задания для
вывода в системе: прямая и		домашней работы
обратная волна;способы		1
визуального представления		
правил ипроцедур вывода в		
продукционных системах.		
Тема 4. Фреймовая модель	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
представления знаний: фрейм	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы

	ПУ 4 1. ПУ 4 2. ПУ 4 2.	Родиоски для
	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
	ПК-5.2; ПК-6.2	самостоятельного контроля
		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 5. Ненадежные и нечеткие	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
знания. Использование	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
метода разбиения сложных задач	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
на подзадачи с использованием	ПК-5.2; ПК-6.2	самостоятельного контроля
дерева И-ИЛИ-КОМБ.		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 6. Язык программирование	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
Пролог. Простейшие	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
Пролог-программы. Термы	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
	ПК-5.2; ПК-6.2	самостоятельного контроля
		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 7. Структура и	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
разработчики экспертных	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
систем. Основные функции	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
экспертных систем.	ПК-5.2; ПК-6.2	самостоятельного контроля
-		знаний студентов
		Вопросы и задания для
		домашней работы
Тема 8. Понятие гибридности.	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
История развития	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
гибридных экспертных систем.	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
Существующие гибридные	ПК-5.2; ПК-6.2	самостоятельного контроля
экспертные системы.		знаний студентов
•		Вопросы и задания для
		домашней работы
Тема 9. Нейронная сеть.	ПК-1.1; ПК-1.2; ПК-1.3;	Практические задания
Биологические основы	ПК-2.1; ПК-2.2; ПК-3.3;	Лабораторные работы
функционирования нейрона.	ПК-4.1; ПК-4.2; ПК-4.3;	Вопросы для
Первые модели	ПК-5.2; ПК-6.2	самостоятельного контроля
нейронной сети. Модель нервной	, 	знаний студентов
клетки по МакКаллоку-Питсу.		Вопросы и задания для
		домашней работы
		Activition become

Оценочные средства <u>Текущий контроль</u>

Целью текущего контроля знаний является установление подробной, реальной картины студенческих достижений и успешности усвоения ими учебной программы на данный момент времени. В условиях рейтинговой системы контроля результаты текущего оценивания студента используются как показатель его текущего рейтинга.

Текущий контроль успеваемости осуществляется в течение семестра, в ходе повседневной учебной работы по индивидуальной инициативе преподавателя. Данный

вид контроля стимулирует у студентов стремление к систематической самостоятельной работе по изучению дисциплины.

Описание видов практических занятий, предусмотренных РПД Выполнение практических заданий

Практические задания выдаются студентам с целью применения полученных знаний на практике под руководством преподавателя. Практические задания могут быть представлены в виде решения задач, проблемных заданий, тренингов и иных видах, направленных на получение практических знаний

Лабораторные работы выполняются под руководством преподавателя.

Описание видов самостоятельной работы, предусмотренных РПД Подготовка к аудиторным занятиям

Подготовка к аудиторным занятиям состоит из изучения материала по соответствующей теме и ответов на вопросы для самоконтроля. Проверка уровня подготовки студентов к занятиям может проводится устным опросом, тестом, контрольной работой или иными видами текущего контроля.

Выполнение домашнего задания

Домашнее задание, как правило состоит из нескольких вопросов и заданий. Домашняя контрольная работа выполняется студентом самостоятельно не во время аудиторных занятий и имеет своей целью проверить текущий уровень формирования компетенций.

Задания для текущего контроля

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Оценка знаний, умений и навыков в процессе изучения дисциплины производится с использованием фонда оценочных средств.

5.1. Типовой вариант задания на контрольную работу

- Разработать экспертную систему учета посещаемости студентов группы ВУЗа.
- Построить нейронную сеть распознавания 2-х букв алфавита.
- Построить нейронную сеть принятия решения, что делать после 18-00 в выходные.
- Разработать нечётко-логическую схему распознавания уровня финансового показателя.

5.2. Типовой тест промежуточной аттестации

Ниже приведены типовые тесты по теме 1 для проверки знаний студентов.

№п /п	Вопрос	Варианты ответа	
1.	По каким	В соответствии с принципами организации и	+
	принципам	функционирования	
	строятся	Биологических нейронных сетей	
	искусственные	По принципам и правилам математической логики	
	нейронные сети?	В соответствии с принципами искусственного интеллекта	
		и теории принятия решений	
		На основе принципов имитационного моделирования	
		сложных систем и процессов	
2.	Кто и когда	У.Маккалох (W. McCulloch)иУ. Питтс (W. Pitts) в1943г.	+
	предложил первую	Д.Хебб (D. Hebb) в1949 г.	
	модель нейрона?	Ф.Розенблатт (F.Rosenblatt)в1957г.	
		Д.Хьюбел (D.Hubel) иТ.Визель(T.Wiesel)в1959 г.	

3.	Кто и когда	У.Маккалох(W. McCulloch)иУ. Питтс(W. Pitts)в1943г.	
٥.	впервые предложил	Д.Хебб (D. Hebb) в1949 г.	+
	правила обучения	Ф.Розенблатт (F.Rosenblatt)в1957г.	
	искусственной	Д.Хьюбел (D.Hubel) иТ.Визель(T.Wiesel)в1959 г.	
	нейронной сети?	Д. Авноси (В. Пиосі) и Г. Визсль (Т. Wieser)в 1939 Г.	
4.	Кто и когда	У.Маккалох (W. McCulloch)иУ. Питтс(W. Pitts)в1943г.	
7.	разработал	Д.Хебб(D. Hebb) в1949 г.	
	принципы	Ф.Розенблатт(F.Rosenblatt)в1957г.	+
	организации и	Д.Хьюбел (D.Hubel) иТ.Визель(T.Wiesel) в1959 г.	
	функционирования	——————————————————————————————————————	
	персептронов?		
5.	Кто и когда	У.Маккалох (W. McCulloch)иУ. Питтс(W. Pitts)в1943г.	
	разработал	Д.Хебб(D. Hebb) в1949 г.	
	когнитрон?	Ф.Розенблатт(F.Rosenblatt)в1957г.	
		К.Фукушима(K.Fukushima)в1975г.	+
6.	Кто и когда предложил	Д.Хебб(D. Hebb) в1949 г.	
	нейросетевые модели,	Ф.Розенблатт (F.Rosenblatt)в1957г.	
	обучающейся без	Т.Кохонен (Т. Kohonen)в1982г.	+
	учителя на основе	К.Фукушима (K.Fukushima)в1975г.	
	самоорганизации?		
7.	Кто и когда создал	Ф.Розенблатт (F.Rosenblatt)в1957г.	
	адаптивную	Т.Кохонен (Т. Kohonen)в1982г.	
	резонансную теорию и	С.Гроссберг (S. Grossberg)в1987 г.	+
	модели нейронных	Д.Хебб (D. Hebb) в1949 г.	
	сетей на ее основе?		
8.	Какими свойствами	• обучение на основе примеров;	+
	обладают	• извлечение значимой информации и закономерностей	
	искусственные	из избыточных и зашумленных данных;	
	нейронные сети?	• обобщение предыдущего опыта;	
		• адаптивность к изменению условий функционирования	
		• обучение на основе прецедентов (примеров);	
		• простота лингвистической интерпретации структуры	
0	V	сети и значений синаптических весов нейронов сети;	+
9.	Когда использование искусственной	• отсутствует алгоритм решения задачи или неизвестен	+
	нейронной сети	принцип ее решения, но имеются экспериментальные данные ее решения;	
	является	задача характеризуется большими объемами	
	целесообразным?	информации;	
	целесооразным:	данные неполны, зашумлены, избыточны или	
		противоречивы	
		• отсутствует алгоритм решения задачи или неизвестен	
		принцип ее решения, но имеются экспериментальные	
		данные ее решения;	
		• задача характеризуется большими объемами	
		информации;	
		• данные неполны, зашумлены, избыточны или	
		противоречивы	
		•	
		• задача характеризуется большими объемами	
		• задача характеризуется большими объемами информации;	
		информации;	

1			
		• данные неполны, зашумлены, избыточны или	
		противоречивы	
		• задача характеризуется большими объемами	
		информации;	
		• требуется объяснить результаты функционирования	
		и моделирования;	
		• необходимо осуществить экспертное формирование базы	
10 5		знаний	
	В чем заключается	Задача кластеризации состоит в указании принадлежности	
	вадача	входного образа, представленного вектором признаков,	
K	кластеризации?	одному или нескольким предварительно определенным	
		классам.	
			+
		обучающая выборка сметками классов. Решение задачи	
		кластеризации основано на установлении подобия образов	
		и размещении близких образов в один	
		кластер.	
		Задачей кластеризации является нахождение решения,	
		которое удовлетворяет системе ограничений и	
		максимизирует или минимизирует целевую функцию.	
		Задачей кластеризации является расчет такого входного	
		воздействия, при котором система следует по желаемой	
		траектории, диктуемой эталонной моделью.	
11. E	В чем заключается	Задача аппроксимации состоит в указании	
	вадача	принадлежности входного образа, представленного	
a	аппроксимации?	вектором признаков, одному или нескольким	
		предварительно определенным классам.	
		При решении задачи аппроксимации отсутствует	
		обучающая выборка с метками классов. Решение задачи	
		аппроксимации основано на установлении подобия	
		образов и размещении близких образов в один	
		класс аппроксимации.	
		Задачей кластеризации является нахождение решения,	
		которое удовлетворяет системе ограничений и	
		максимизирует или минимизирует целевую функцию.	
		Пусть имеется обучающая выборка, которая генерируется	+
		неизвестной функцией. Задача аппроксимации состоит в	
		нахождении оценки этой функции.	
12. I	Из каких элементов	Из умножителей, сумматораине линейного	+
(состоит формальный нейрон?	преобразователя	
I		Из интегратора, линейного преобразователя и	
		нормализатора	
		Из сумматоров, умножителя и нелинейных	
		преобразователей	
		Из сумматоров, умножителя и делителя	
3. I	В какой	Во-первых, умножение сигналов на входах нейрона на	
		весовые коэффициенты; во-вторых, суммирование	+
	последовательности		
	осуществляется		
	функционирование	преобразование	
	нейрона?	Во-первых, суммирование сигналов на входах нейрона; во-	
		вторых, их нормализация; в-третьих, нелинейное	

		преобразование	
		Во-первых, нормализация сигналов на входах нейрона; вовторых, их суммирование; в-третьих, нелинейное преобразование Во-первых, умножение сигналов на входах нейрона на весовые коэффициенты; во-вторых, нелинейное преобразование полученных	
		результатов; в-третьих, их суммирование	
14.	Назовите	Номинальная	+
	несуществующую	Сигмоидальная	
	функцию активации нейрона	Радиально-базисная	
		Квадратичная	
15.	Какие свойства сигмоидальной функции привели к ее широкому распространению в качестве активационной функции для моделей нейронов?	 простое выражение для производной; дифференцируемость на всей оси абсцисс; усиление слабых сигналов лучше, чем больших, и предотвращение насыщения от больших сигналов возможность использования только либо для положительных, либо для отрицательных значений 	+
		входных сигналов; • одинаковое усиление малых и больших значений входных сигналов; • простое выражение для ее производной;	
		 обеспечение хороших алгебраических свойств реализуемого нелинейного преобразования; отсутствие ограничений области значений; предотвращение насыщения от больших сигналов отсутствие ограничений области значений; дифференцируемость на всей оси абсцисс; простота интегрирования 	
16.	Какая из	Линейная	
10.	какая из активационных функций нейрона принимает одно из двух альтернативных значений?	Сигмоидальная	
		Знаковая (сигнатурная)	+
		Радиально-базисная	ı
17.	Какая из активационных функций нейрона не имеет ограничений в области значений?	Линейная	+
		Сигмоидальная	
		Знаковая (сигнатурная)	
		Радиально-базисная	
18.	Какие типы нейронов в искусственной нейронной сети можно выделить в	• промежуточные нейроны;	+
	зависимости от	• соматические нейроны;	
	выполняемых ими	• дендритные нейроны	
	I	1 · · · · · · · · · · · · · · · · · · ·	1

	функций?	нормализованные нейроны;активационные нейроны;неактивационные нейроны	
		возбуждающие нейроны;тормозящие нейроны;нейтральные нейроны	
19.	Какие основные типы искусственных нейронных	многослойные;полносвязные;	+

- 6. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 6.1.Итоговый контрольный тест доступен студенту только во время тестирования, согласно расписания занятий или в установленное деканатом время.
- 6.2.Студент информируется о результатах текущей успеваемости.
- 6.3.Студент получает информацию о текущей успеваемости, начислении бонусных баллов и допуске к процедуре итогового тестирования от преподавателя или в ЭИОС.
- 6.4. Производится идентификация личности студента.
- 6.5.Студентам, допущенным к промежуточной аттестации, открывается итоговый контрольный тест.
- 6.6. Тест закрывается студентом лично по завершении тестирования или автоматически по истечении времени тестирования.